
ml_notes.akkefa.com
Release 0.0.1

Ikram Ali

Apr 12, 2024

CONTENTS

1 Contents 3

2 Indices and tables 391

Index 393

i

ii

ml_notes.akkefa.com, Release 0.0.1

Greetings! I am Ikram Ali, and I excel at founding and developing machine learning engineering and data science
teams. My current focus areas are NLP (Natural Language Processing) and MLOps, where I am passionate about
advancing these technologies.

My career strategy involves a deep commitment to mastering the multidisciplinary skills essential for leading data
science initiatives. This includes not only Research and Data Engineering but also Machine Learning Engineering and
comprehensive Project Management, spanning Agile and Product Management techniques. My broad skill set allows
me to efficiently lead cross-functional teams and effectively tackle the challenges of transitioning a model from its
initial ideation through to full-scale production.

• https://www.linkedin.com/in/akkefa/

• https://www.github.com/akkefa

I would like to offer concise definitions and comprehensible explanations of Machine Learning and Deep Learning.

CONTENTS 1

https://www.linkedin.com/in/akkefa/
https://www.github.com/akkefa

ml_notes.akkefa.com, Release 0.0.1

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 ML Notation / Equations

1.1.1 Notation

Symbol Formula Ex-
plained

𝜇
∑︀

𝑥 𝑘𝑃 (𝑋 = 𝑥) =
∫︀∞
−∞ 𝑥𝑓(𝑥)𝑑𝑥

𝑉 (𝑋) or 𝜎2 𝐸[(𝑋 − 𝐸[𝑋])2] = 𝐸[(𝑋 − 𝜇)2] = 𝐸[𝑋2]− 𝐸[𝑋]2

𝜎
√︀
𝑉 (𝑋) Stan-

dard
devia-
tion

𝐶𝑜𝑣(𝑋,𝑌) Covariance of X and Y Covari-
ance of
X and Y

�̄� The sample The
sample
mean
is an
average
value

𝛿 𝛿(𝑣) Acti-
vation
fucn-
tions,
sigmoid,
relu, etc.

3

ml_notes.akkefa.com, Release 0.0.1

1.1.2 Equations

Cosine Similarity

Cosine similarity is a metric used to measure the similarity between two vectors in a multi-dimensional space. Cosine
similarity measures the cosine of the angle between two non-zero vectors in an n-dimensional space.

Formula = dot product / normalized sum of squares

cos(𝑥, 𝑦) =
𝑥 · 𝑦√

𝑥2 ·
√︀
𝑦2

=

∑︀𝑛
𝑖=1 𝐴𝑖𝐵𝑖√︀∑︀𝑛

𝑖=1 𝐴
2
𝑖

√︀∑︀𝑛
𝑖=1 𝐵

2
𝑖

Properties

• Scale Invariance Cosine similarity is scale-invariant, meaning it is not affected by the magnitude of the vectors,
only by their orientations.

• One hot and multi hot vectors easily.

import torch
from torch.nn import functional as F

v1 = torch.tensor([0, 0, 1], dtype=torch.float32)
v2 = torch.tensor([0, 1, 1],dtype=torch.float32)

print(F.cosine_similarity(v1, v2 , dim=0))

print(F.normalize(v1, dim=0) @ F.normalize(v2, dim=0))

print(torch.norm(v1) / torch.norm(v2))

print(torch.matmul(v1, v2.T) / (torch.sqrt(torch.sum(v1 ** 2)) * torch.sqrt(torch.
→˓sum(v2 ** 2))))

tensor(0.7071)
tensor(0.7071)
tensor(0.7071)
tensor(0.7071)

/tmp/ipykernel_940/3833807425.py:10: UserWarning: The use of `x.T` on tensors of␣
→˓dimension other than 2 to reverse their shape is deprecated and it will throw an error␣
→˓in a future release. Consider `x.mT` to transpose batches of matrices or `x.
→˓permute(*torch.arange(x.ndim - 1, -1, -1))` to reverse the dimensions of a tensor.␣
→˓(Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:3637.)
print(torch.matmul(v1, v2.T) / (torch.sqrt(torch.sum(v1 ** 2)) * torch.sqrt(torch.

→˓sum(v2 ** 2))))

4 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

1.2 What is Probability

1.2.1 Definition

• Probability is the branch of mathematics that deals with the occurrence of a random event.

• Probability is the measure of the likelihood of an event to happen.

Probability is the study of randomness and uncertainty. Probability theory is widely used in the area of studies such as
statistics, finance, gambling, artificial intelligence, machine learning, computer science, game theory, and philosophy.

Applications of probability

Some of the applications of probability are predicting results of the following events:

Minor

• that a customer will buy milk if they are also buying bread.

• Of getting at least 2 heads in 5 coin flips.

• Getting 3 and 5 on throwing a die.

• Pulling a green candy from a bag of red candies.

• Winning a lottery 1 in many millions.

• # of customers arriving at a bank in a week

Major

• It is used for risk assessment and modelling in various industries

• Weather forecasting or prediction of weather changes

• Probability of a team winning in a sport based on players and strength of team

• In the share market, chances of getting the hike of share prices

1.2. What is Probability 5

ml_notes.akkefa.com, Release 0.0.1

1.2.2 Probability Terminology

The first thing we do when we start thinking about the probability list a number of things that could possibly happen.
Some of the important probability terms are discussed here.

Sample Space

Sample space of an experiment, denoted 𝑆, is the set of all possible outcomes of an experiment or trial.

• Suppose that we toss a die. Six numbers, from 1 to 6, can appear face up, but we do not yet know which one of
them will appear. The sample space is S = {1,2,3,4,5,6}.

• For tossing is a fair coin, the sample space is S = {H, T}

Experiment or Trial

Experiment is any action or process that generates observations or outcomes.\ E.g. The tossing of a coin, selecting a
card from a deck of cards, throwing a dice etc.

Outcome or Sample Point

An outcome is a possible result of an experiment or trial.
E.g. The outcome of tossing a coin is a head or a tail.
Roll a die, the outcome is a number between 1 and 6. Each of the six numbers is a sample point

6 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Event

Event is any possible outcome, or combination of outcomes, of an experiment.
E.g. Getting a Head while tossing a coin is an event.

Cardinality

Cardinality of a sample space or an event, is the number of outcomes it contains. |𝑆| represents the cardinality of the
sample space.
Tossing a coin, |𝑆| = 2, Rolling a die, |𝑆| = 6
Flip a coin twice, S = {00,01,11,10} |𝑆| = 4
Flip a coin until you get a tail. 𝑆 = {1, 01, 001, 0001, . . .} |𝑆| =∞

Population

Those individuals or objects from which we want to acquire information or draw a conclusion.
E.g. All valves produced by a specific manufacturing plant.
All adult females in the United States.
All smokers

Sample

Most of the time, the population is so large, we can only collect data on a subset of it. We will call this our sample.

Sets and Subsets

A set is defined as a group of objects (i.e., sets can be made up of letters, numbers, names, etc.).
A subset is defined as a set within a set. set A is a subset of set B if and only if every element of A is also in B.

Empty Set

The set that contains nothing, denoted ∅.

Complement

𝐴𝑐 = A complement. This is a shorthand way of saying when A does not occur. This set is made up of everything not
in A.

Parameter

Parameters are the unknown values of an entire population, such as the mean and standard deviation. Samples can
estimate population parameters but their exact values are usually unknowable.

Interview Question

Q: What is the sample space of rolling Two Dice?
Ans: The total number of joint outcomes (a,b) is 6 times 6 which is 36.

1.2. What is Probability 7

ml_notes.akkefa.com, Release 0.0.1

Axioms of Probability

Axiom 1
For any event, ‘A’ the probability of possible outcomes is either 0 or 1, where 0 is the event which
never occurs, and 1 is the event will certainly occur. For any event 𝐴, 0 ≤ 𝑃 (𝐴) ≤ 1.

Axiom 2
The sum of probabilities of all possible outcomes is 1.Probability of the sample space S is 𝑃 (𝑆) = 1.

Axiom 3
If 𝐴𝑛 mutually exclusive events (intersection of any two is the empty set) then 𝑃

(︁⋃︀𝑘
𝑖=1 𝐴𝑛

)︁
=∑︀𝑛

𝑘=1 𝑃 (𝐴𝑘)

Axiom 4
The complement of any event A is the event that consists of all the outcomes that are not in A.

Axiom 5
If both A and B are independent, then the conditional probability that event B occurs given that
event A has already occurred. P (A and B) = P (A) P (B | A). This is called the General rule of
multiplication.

1.2.3 Counting

Despite the trivial name of this topic, be assured that learning to count is not as easy as it sounds.

Naive Probability

The probability of an event occurring, if the likelihood of each outcome is equal, is:

𝑃 (Event) =
number of favorable outcomes

number of outcomes

When we are working with probabilities, our notation will be P(A). this means the Probability that event A occurred.
So, if A is the event of flipping heads in one flip of a fair coin, then P(A) = .5

This Naive Definition is a reasonable place to start, because it’s likely how you have calculated probabilities up to this
point. Of course, this is not always the correct approach for real world probabilities (hence the name naive).

Multiplication Rule

To understand the Multiplication Rule, visualize a process that has multiple steps, where each step has multiple choices.
For example, say that you are ordering a pizza.

1. Size (small, medium, or large)

2. Topping (pepperoni, meatball, sausage, extra cheese)

3. Order Type (delivery or pickup)

Using the multiplication rule, we can easily count the number of distinct pizzas that you could possibly order. Since
there are 3 choices for size, 4 choices for toppings, and 2 choices for pickup.

we simply have 3 4 2 = 24 different pizza options.

Now that we have counted the total of number of possible pizzas, it is easy to solve various probability problems.

Interview Question

8 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Q: What are the outcomes of flipping a fair coin and simultaneously rolling a fair die?
Ans: 6 x 2 = 12 outcomes.

Q: How many possible license plates could be stamped if each license plate were required to have exactly 3 letters and
4 numbers?
Ans: 26 x 26 x 26 x 10 x 10 x 10 x 10 = 175,650,000

Factorial

You may have used the factorial for simple arithmetic calculations.

Another use for the factorial function is to count how many ways you can choose things from a collection of things or
find how many ways things can be arranged.

Example

Counting the the number of ways to order the letters A, B, and C. We will define a specific arrangement or order as a
permutation. You could likely figure this out by just writing out all of the permutations:

{ABC,ACB,BAC,BCA,CAB,CBA}

It’s clear that there are 6 permutations. what if you had to do the same for all 26 letters in the alphabet? if you didn’t
feel like writing out the 26 letters over and over and over, you could use the factorial for a more elegant solution.

the number of permutations when ordering A,B and C is 3!

3 2 1 = 6

Another example, In how many ways can 7 different books be arranged on a shelf?

We could use the Multiplication Principle to solve this problem. We have seven positions that we can fill with seven
books. There are 7 possible books for the first position, 6 possible books for the second position, five possible books
for the third position, and so on. The Multiplication Principle tells us therefore that the books can be arranged in:

7654321 = 5040

Alternatively, we can use the simple rule for counting permutations. P = 7! = 5040

Python Solution

from math import factorial

print(factorial(3))
print(factorial(6))

6
720

1.2. What is Probability 9

ml_notes.akkefa.com, Release 0.0.1

Binomial Coefficient

The binomial coefficient is a mathematical formula that counts the number of ways to choose k items from a collection
of n items. This is perhaps the most useful counting tool. which in english is pronounced n choose x =

(︀
𝑛
𝑘

)︀
.

(︀
𝑛
𝑘

)︀
=

𝑛!

𝑘!(𝑛− 𝑘)!

With replacement

means the same item can be chosen more than once.

Without replacement

means the same item cannot be selected more than once.

Permutation

Permutation relates to the act of arranging all the members of a set into some sequence or order.

Any ordered sequence of k objects taken from a set of n distinct objects is called a permutation of size k.

When selecting more than one item without replacement and order does matter.

Example

Suppose an organization has 60 members. One person is selected at random to be the␣
→˓president, another
person is selected as the vice-president, and a third is selected as the treasurer.
How many ways can this be done? (This would be the cardinality of the sample space.)

𝑃3,60 = 60.59.58 =
60!

57!
= 205, 320

Combination

When selecting more than one item without replacement and order does not matter.

Given n distinct objects, any unordered subset of size k of the objects is called a combination.

𝐶𝑛,𝑘 =

(︂
𝑛

𝑘

)︂
=

(︂
𝑛

𝑘, 𝑛− 𝑘

)︂
=

𝑛!

𝑘!(𝑛− 𝑘)!

Example

Suppose we have 60 people and want to choose a 3 person team (order is not important).␣
→˓How many combinations are possible?

Suppose we have the same 60 people, 35 are female and 25 are male. We need to select a␣
→˓committee of 11 people.
How many ways can such a committee be formed?

10 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

𝐶60,11 =
60!

11!(60− 11)!
= |𝑆|

What is the probability that a randomly selected committee will contain at least 5 men␣
→˓and at least 5
women? (Assume each committee is equally likely.)

P(at least 5M and at least 5W on committee)
= 𝑃 (5𝑚 + 6𝑤) + 𝑝(6𝑚 + 5𝑤)

=

(︂
25
5

)︂(︂
35
6

)︂
(︂

60
11

)︂ +

(︂
25
6

)︂(︂
35
5

)︂
(︂

60
11

)︂

What is the probability of drawing the ace of spades twice in a row? (Assume that any␣
→˓card drawn on the first draw will
be put back in the deck before the second draw.)

𝑃 (ace of spades)× 𝑃 (ace of spades) =

(︂
1

52

)︂2

=
1

2704
= 0.00037 = 0.037%

You draw a card from a deck of cards. After replacing the drawn card back in the deck␣
→˓and shuffling thoroughly,
what is the probability of drawing the same card again?

𝑃 (any card) =
52

52
= 1

𝑃 (same card as first draw) =
1

52
≈ 0.019

𝑃 (any card)𝑃 (same card as first draw) = (1)(
1

52
) =

1

52
≈ 0.019

Use $n \choose k$ to calculate the probability of throwing three heads in five coin␣
→˓tosses. (︂

𝑛

𝑘

)︂
=

(︂
5

3

)︂
=

5!

3!(5− 3)!
=

5!

(3!)(2!)
=

5× 4× 3× 2× 1

(3× 2× 1)(2× 1)
=

120

(6)(2)
=

120

12
= 10

Twelve (12) patients are available for use in a research study. Only seven (7) should be␣
→˓assigned to receive the study
treatment. How many different subsets of seven patients can be selected?(︂

𝑛

𝑘

)︂
=

(︂
12

7

)︂
=

12!

7!(12− 7)!
= 792

1.2. What is Probability 11

ml_notes.akkefa.com, Release 0.0.1

Torch combinations

import torch

a = torch.tensor([1, 2, 3])
print(torch.combinations(a))
print(torch.combinations(a, r=3))
torch.combinations(a, with_replacement=True)

tensor([[1, 2],
[1, 3],
[2, 3]])

tensor([[1, 2, 3]])

tensor([[1, 1],
[1, 2],
[1, 3],
[2, 2],
[2, 3],
[3, 3]])

Difference Between Permutation and Combination

Permutation Combination
Order matters Order doesn’t matter
Number of ways to arrange the elements of a set. Number of ways to choose k elements from a set of n

elements.
Arranging people, digits, numbers, alphabets, letters,
and colours.

Selection of menu, food, clothes, subjects, the team.

Picking a President, VP and Waterboy from a group of
10.

Picking a team of 3 people from a group of 10.

Listing your 3 favorite desserts, in order, from a menu of
10. P(10,3) = 720.

Choosing 3 desserts from a menu of 10. C(10,3) = 120.

Sampling Table

Order Matters Order Doesn’t Matter
With Replacement 𝑛𝑘

(︀
𝑛+𝑘−1

𝑘

)︀
Without Replacement 𝑛!

𝑘!(𝑛−𝑘)!

(︀
𝑛
𝑘

)︀

12 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Interview Questions

• There are 25 students in a class. Find the number of ways in which a committee of 3 students is to be formed?
25 choose 3 2300

• In a meeting between two countries, each country has 12 delegates. All the delegates of one country shake hands
with all delegates of the other country. Find the number of handshakes possible?
Total number of handshakes = 12 x 12 = 144

• How many groups of 6 persons can be formed from 8 men and 7 women?
Total number of person = 8 men + 7 women = 15
15 choose 6 = 5005

1.3 Bayes Theorem

1.3.1 Definition

Bayes theorem is also known as the formula for the probability of causes.

Theorem states that the conditional probability of an event, based on the occurrence of another event, is equal to the
likelihood of the second event given the first event multiplied by the probability of the first event.

1.3.2 Conditional Probability

Two events A and B from the same sample space S. Calculate the probability of event A knowing that event B has
occurred. B is the “conditioning event”. 𝑃 (𝐴|𝐵)

Conditional Probability is 𝑃 (𝐴 | 𝐵) = 𝑃 (𝐴∩𝐵)
𝑃 (𝐵) , 𝑃 (𝐵) > 0

1.3.3 Multiplication Rule

This leads to the multiplication rule 𝑃 (𝐴 ∩𝐵) = 𝑃 (𝐵)𝑃 (𝐴 | 𝐵) = 𝑃 (𝐴)𝑃 (𝐵 | 𝐴)

1.3.4 Bayes Theorem

Bayes Theorem 𝑃 (𝐴 | 𝐵) = 𝑃 (𝐵|𝐴)𝑃 (𝐴)
𝑃 (𝐵)

Example

Bayes Theorem can detect spam e-mails.

• Assume that the word offer occurs in 80% of the spam messages.

• Also assume offer occurs in 10% of my desired e-mails.

Question

If 30% of the received e-mails are considered as a scam, and I will receive a new message which contains ‘offer’, what
is the probability that it is spam?

I received 100 e-mails.

1.3. Bayes Theorem 13

ml_notes.akkefa.com, Release 0.0.1

• I have 30 spam e-mails

• 70 desired e-mails.

The percentage of the word ‘offer’ that occurs in spam e-mails is 80%. It means 80% of 30 e-mail and it makes 24.
Now, I know that 30 e-mails of 100 are spam and 24 of them contain ‘offer’ where 6 of them not contains ‘offer’.

The percentage of the word ‘offer’ that occurs in the desired e-mails is 10%. It means 7 of them (10% of 70 desired
e-mails) contain the word ‘offer’ and 63 of them not.

The question was what is the probability of spam where the mail contains the word ‘offer’:

1. We need to find the total number of mails which contains ‘offer’ ; 24 +7 = 31 mail contain the word ‘offer’

2. Find the probability of spam if the mail contains ‘offer’ ;

In 31 mails 24 contains ‘offer’ means 77.4% = 0.774 (probability)

NOTE: In this example, I choose the percentages which give integers after calculation. As a general approach, you can
think that we have 100 units at the beginning so if the results are not an integer, it will not create a problem. Such that,
we cannot say 15.3 e-mails but we can say 15.3 units.

Solution with Bayes’ Equation:

A = Spam

B = Contains the word ‘offer’

𝑃 (spam | contains offer) =
𝑃 (contains offer | spam) * 𝑃 (spam)

𝑃 (contains offer)

P(contains offer|spam) = 0.8 (given in the question)

P(spam) = 0.3 (given in the question)

Now we will find the probability of e-mail with the word ‘offer’. We can compute that by adding ‘offer’ in spam and
desired e-mails. Such that;

P(contains offer) = 0.30.8 + 0.70.1 = 0.31

𝑃 (spam | contains offer) =
0.8 * 0.3

0.31
= 0.774

As it is seen in both ways the results are the same. In the first part, I solved the same question with a simple chart and
for the second part, I solved the same question with Bayes’ theorem.

14 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

1.3.5 Law of Total Probability

𝐵 = (𝐵 ∩𝐴) ∪ (𝐵 ∩𝐴𝑐)

𝑃 (𝐵) = 𝑃 (𝐵 ∩𝐴) + 𝑃 (𝐵 ∩𝐴𝑐) = 𝑃 (𝐵 | 𝐴)𝑃 (𝐴) + 𝑃 (𝐵 | 𝐴𝑐)𝑃 (𝐴𝑐)

1.3.6 Independence and Mutually Exclusive Events

Two events are independent if knowing the outcome of one event does not change the probability of the other.

• Flip a two-sided coin repeatedly. Knowing the outcome of one flip does not change the probability of the next.

Two events, A and B, are independent if 𝑃 (𝐴|𝐵) = 𝑃 (𝐴), or equivalently 𝑃 (𝐵|𝐴) = 𝑃 (𝐵).

Recall: 𝑃 (𝐴 | 𝐵) = 𝑃 (𝐴∩𝐵)
𝑃 (𝐵)

then, if A and B are independent, we get the multiplication rule for independent events:

𝑃 (𝐴 ∩𝐵) = 𝑃 (𝐴)𝑃 (𝐵)

Example

Suppose your company has developed a new test for a disease. Let event A be the event that a randomly selected
individual has the disease and, from other data, you know that 1 in 1000 people has the disease. Thus, P(A) = .001.
Let B be the event that a positive test result is received for the randomly selected individual. Your company collects
data on their new test and finds the following:

• 𝑃 (𝐵|𝐴) = .99

• 𝑃 (𝐵𝑐|𝐴) = .01

• 𝑃 (𝐵|𝐴𝑐) = .02

Calculate the probability that the person has the disease, given a positive test result. That is,

find 𝑃 (𝐴|𝐵).

𝑃 (𝐴 | 𝐵) =
𝑃 (𝐴 ∩𝐵)

𝑃 (𝐵)

=
𝑃 (𝐵 | 𝐴)𝑃 (𝐴)

𝑃 (𝐵)
← Bayes theorem

=
𝑃 (𝐵 | 𝐴)𝑃 (𝐴)

𝑃 (𝐵 | 𝐴)𝑃 (𝐴) + 𝑃 (𝐵 | 𝐴𝑐)𝑃 (𝐴𝑐)
← Law of Total Probability

=
(.99)(.001)

(.99)(.001) + (.02)(.999)

= .0472

𝑃 (𝐴) = .001← prior prob of 𝐴
𝑃 (𝐴 | 𝐵) = .0472← posterior prob of 𝐴

1.3. Bayes Theorem 15

ml_notes.akkefa.com, Release 0.0.1

1.4 Random Variables

The first step to understand random variable is to do a fun experiment. Go outside in front of your house with a pen
and paper. Take note of every person you pass and their hair color & height in centimeters. Spend about 10 minutes
doing this.

Congratulations! You have conducted your first experiment! Now you will be able to answer some questions such as:

• How many people walked past you?

• Did many people who walked past you have blue hair?

• How tall were the people who walked past you on average?

You pass 10 people in this experiment, 3 of whom have blue hair, and their average height may be 165.32 cm. In each
of these questions, there was a number; a measurable quantity was attached.

1.4.1 Definition

A random variable rv is a real-valued function, whose domain is the entire sample space of an experiment. Think of
the domain as the set of all possible values that can go into a function. A function takes the domain/input, processes it,
and renders an output/range. This set of real values obtained from the random variable is called its range.

A random variable (rv) is a function that maps events (from the sample space S) to the real numbers. It’s a function
which performs the mapping of the outcomes of a random process to a numeric value.

The domain of a random variable is a sample space, which is represented as the collection of possible outcomes of a
random event. For instance, when a coin is tossed, only two possible outcomes are acknowledged such as heads or tails.

Denoted by

Random variables Denote by a capital letters near the end of the alphabet (e.g. X, Y).

Note: Why is it called a random variable?
Because we think of it as a variable that take random value intuitively. Formally they are function.

1.4.2 Probability Distribution

A Probability Distribution is a graph, table, or function that gives the probability for each value of the random variable.

Requirments

1. The sum of the probabilities is 1.
∑︀

𝑓(𝑥) = 1.

2. Every probability 𝑝𝑖 is a number between 0 and 1. 0 ≤ 𝑓(𝑥) ≤ 1

16 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Difference between random variables and probability distributions

A random variable is a numerical description of the outcome of a statistical experiment. The probability distribution
for a random variable describes how the probabilities are distributed over the values of the random variable.

1.4.3 Types of Random Variables

Discrete random variable
A discrete random variable is a type of random variable that has a countable number of distinct values that can
be assigned to it, such as in a coin toss.

Continuous random variable
A continuous random variable stands for any amount within a specific range or set of points and can reflect an
infinite number of potential values, such as the average rainfall in a region.

Big Picture In statistics, we will model populations using random variables (e.g. mean, variance) of these random
variables will tell us about the population we are studying.

1.4.4 Probability mass function (P.M.F)

The probability that a discrete random variable 𝑋 takes on a particular value 𝑥 that is 𝑃 (𝑋 = 𝑥) is denoted by

p.m.f = 𝑓(𝑥) = 𝑓𝑥(𝑥) = 𝑓𝑦(𝑦)

1.4. Random Variables 17

ml_notes.akkefa.com, Release 0.0.1

Properties

The probability mass function, 𝑃 (𝑋 = 𝑥) = 𝑓(𝑥), of a discrete random variable 𝑋 is a function that satisfies the
following properties:

1. All of the probabilities must be positive. 𝑃 (𝑋 = 𝑥) = 𝑓(𝑥) > 0, if 𝑥 ∈ the support 𝑆

2. Sum of all probabilities of same sample space equals to 1.
∑︀

𝑥∈𝑆 𝑓(𝑥) = 1

3. 𝑃 (𝑋 ∈ 𝐴) =
∑︀

𝑥∈𝐴 𝑓(𝑥)

Random variable = 𝑋 =

{︃
1, if "Heads"
0, if "Tails"

=

{︃
𝑃 (𝑋 = 1), if "Heads"
𝑃 (𝑋 = 0), if "Tails"

𝑃𝑀𝐹 = 𝑓(𝑥) = 𝑓𝑥(𝑥) = 𝑃 (𝑋 = 𝑥) =

⎧⎪⎨⎪⎩
1/2, if 𝑥 = 0

1/2, if 𝑥 = 1

0, otherwise

𝑝(𝑥) = 𝑃 (𝑋 = 𝑥) = 𝑃 (all 𝑥 ∈ 𝑆 | 𝑋(𝑠) = 𝑥)

Interview Question

Q: Let 𝑓(𝑥) = 𝑐𝑥2 for 𝑥 = 1, 2, 3. Determine the constant 𝑐 so that the function 𝑓(𝑥) satisfies the conditions of being
a probability mass function?

Answer: Using property no 2

3∑︁
𝑥=1

𝑓(𝑥) =

3∑︁
𝑥=1

𝑐𝑥2 = 𝑐

3∑︁
𝑥=1

𝑥2

= 𝑐
[︀
12 + 22 + 32

]︀
= 𝑐[1 + 4 + 9]

= 𝑐(14)
set
= 1 = 𝑐 = 1/14

𝑓(𝑥) =
1

14
𝑥2 for 𝑥 = 1, 2, 3

1.4.5 Cumulative distribution function (CDF)

The cumulative distribution function (CDF or cdf) of the random variable X has the following definition:

𝐹𝑋(𝑡) = 𝑃 (𝑋 ≤ 𝑡) =
∑︁
𝑥≤𝑦

𝑃 (𝑋 = 𝑡) =

∫︁ 𝑡

−∞
𝑓(𝑡)𝑑𝑡

Properties

The cdf of random variable X has the following properties:

1. The cdf, 𝐹𝑋(𝑡), ranges from 0 to 1 . This makes sense since 𝐹𝑋(𝑡) is a probability.

2. If𝑋 is a discrete random variable whose minimum value is 𝑎, then𝐹𝑋(𝑎) = 𝑃 (𝑋 ≤ 𝑎) = 𝑃 (𝑋 = 𝑎) = 𝑓𝑋(𝑎).
If 𝑐 is less than 𝑎, then 𝐹𝑋(𝑐) = 0.

3. If the maximum value of 𝑋 is 𝑏, then 𝐹𝑋(𝑏) = 1.

4. Also called the distribution function.

18 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Example

Suppose X is a discrete random variable. Let the pmf of X be equal to

𝑓(𝑥) =
5− 𝑥

10
, 𝑥 = 1, 2, 3, 4

Suppose we want to find the cdf of 𝑋 . The cdf is 𝐹𝑋(𝑡) = 𝑃 (𝑋 ≤ 𝑡).

• For 𝑡 = 1, 𝑃 (𝑋 ≤ 1) = 𝑃 (𝑋 = 1) = 𝑓(1) = 5−1
10 = 4

10 .

• For 𝑡 = 2, 𝑃 (𝑋 ≤ 2) = 𝑃 (𝑋 = 1 or 𝑋 = 2) = 𝑃 (𝑋 = 1) + 𝑃 (𝑋 = 2) = 5−1
10 + 5−2

10 = 4+3
10 = 7

10

• For 𝑡 = 3, 𝑃 (𝑋 ≤ 3) = 5−1
10 + 5−2

10 + 5−3
10 = 4+3+1

10 = 9
10 .

• For 𝑡 = 4, 𝑃 (𝑋 ≤ 4) = 5−1
10 + 5−2

10 + 5−3
10 + 5−4

10 = 10
10 = 1.

1.4.6 Probability density function (PDF)

X = f(x) is the probability density function of the continues random variable X.

𝑃 (𝑎 ≤ 𝑋 ≤ 𝑏) =

∫︁ 𝑏

𝑎

𝑓(𝑥)𝑑𝑥

f(x) = Curve under which area represent the probability 𝑃 (𝑎 ≤ 𝑋 ≤ 𝑏) =
∫︀ 𝑏

𝑎
𝑓(𝑥)𝑑𝑥

1.4.7 Expected Value (Mean or Average)

The concept was first devised in the 17th century to analyze gambling games and answer questions such as:

• How much do I gain - or lose - on average, if I repeatedly play a given gambling game?

• How much can I expect to gain - or lose - by making a certain bet?

For example, if you play a game where you gain 2$ with probability 1/2 and you lose 1$ with probability 1/2, then the
expected value of the game is half a dollar

2 × 1
2 + (−1) × 1

2 = 1
2 = 0.5

it means that if you play this game many times, and the number of times each of the two possible outcomes occurs is
proportional to its probability, then on average you gain 1/2$ each time you play the game.

Definition

The expected value or mean of a random variable is a weighted average of all possible outcomes. In the case of a
continuum of possible outcomes, the expectation is defined by integration.

Denoted by 𝜇𝑥 or 𝐸(𝑋).

𝜇 = 𝜇𝑥 = 𝐸(𝑋) =
∑︁
𝑥

𝑘𝑃 (𝑋 = 𝑥) =

∫︁ ∞

−∞
𝑥𝑓(𝑥)𝑑𝑥

1.4. Random Variables 19

ml_notes.akkefa.com, Release 0.0.1

Example

5 exams result : 70 +80 + 80 + 90 + 90

𝐴𝑣𝑔 = 70+80+80+90+90
5 = 1

5 (70) + 2
5 (80) + 2

5 (90) = 82.5

Let X represent the outcome of a roll of a fair six-sided die. The possible values for X are 1, 2, 3, 4, 5, and 6, all of
which are equally likely with a probability of 1/6 The Expected Value of X is

𝐸[𝑋] = 1 · 16 + 2 · 16 + 3 · 16 + 4 · 16 + 5 · 16 + 6 · 16 = (1 + 2 + 3 + 4 + 5 + 6)/6 = 3.5

x 1 2 3
P(X=x) 1/4 1/4 1/2

𝐸[𝑋] = (1)(1/4) + (2)(1/4) + (3)(1/2) = 9/4 = 2.25 =
∑︀

𝑥 𝑥𝑃 (𝑋 = 𝑥)

Imagine a game in which, on any play, a player has a 20% chance of winning
3𝑎𝑛𝑑𝑎𝑛80𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑚𝑎𝑠𝑠𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑜𝑓𝑡ℎ𝑒𝑟𝑎𝑛𝑑𝑜𝑚𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, 𝑡ℎ𝑒𝑎𝑚𝑜𝑢𝑛𝑡𝑤𝑜𝑛𝑜𝑟𝑙𝑜𝑠𝑡𝑜𝑛𝑎𝑠𝑖𝑛𝑔𝑙𝑒𝑝𝑙𝑎𝑦𝑖𝑠 :so the
average amount won (actually lost, since it is negative)

𝐸(𝑋) = ($3)(0.2) + (−$1)(0.8) = $− 0.20

In the long run you guaranteed to lose no more than 20 cents.

Pytorch implementation

import torch

Create a tensor
T = torch.Tensor([2.453, 4.432, 0.754, -6.554])
print("T:", T)

Compute the mean and standard deviation
mean = torch.mean(T)
print("mean:", mean)

T: tensor([2.4530, 4.4320, 0.7540, -6.5540])
mean: tensor(0.2713)

import matplotlib.pyplot as plt
import seaborn as sns

sns.set_theme(style="darkgrid")
data = torch.randn(25)

print(data)

(continues on next page)

20 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

print("Mean :", torch.mean(data))

_ =sns.displot(data,kde=True,)
plt.axvline(torch.mean(data), color='green')
plt.show()

tensor([-1.0902, 0.3798, -0.4945, -2.5789, 1.9964, 0.8435, -2.0726, 0.6638,
-1.7992, 2.1921, -0.0689, -0.3386, -1.6157, 0.4683, -1.9885, -1.4809,
0.3377, -0.0396, 1.5427, -0.7385, 0.5938, -1.1355, 1.5851, -0.7845,
0.5425])

Mean : tensor(-0.2032)

1.4. Random Variables 21

ml_notes.akkefa.com, Release 0.0.1

Properties

Expectation is a linear operator, which means for our purposes it has a couple of nice properties.

Expected value of a constant

A perhaps obvious property is that the expected value of a constant is equal to the constant itself.

𝐸[𝑐] = 𝑐

Scalar multiplication of a random variable

If X is a random variable and a is a constant, then

𝐸[𝑎𝑋] = 𝑎𝐸[𝑋]

Expectation of a product of random variables

Let X and Y be two random variables. In general, there is no easy rule or formula for computing the expected value of
their product. However, if X and Y are statistically independent, then

𝐸[𝑋𝑌] = 𝐸[𝑋]𝐸[𝑌]

Expectation of a sum of random variables

𝐸(𝑋 + 𝑌) = 𝐸(𝑋) + 𝐸(𝑌)

If random variables is function

𝐸(𝑔(𝑋)) =

{︂ ∑︀
𝑘 𝑔(𝑘)𝑃 (𝑋 = 𝑘), 𝑋 is discrete∫︀∞

−∞ 𝑔(𝑥)𝑓(𝑥)𝑑𝑥,𝑋 is continuous.

𝐸(𝑎𝑋 + 𝑏) =
∑︀

𝑘(𝑎𝑋 + 𝑏)𝑃 (𝑋 = 𝑘)

𝐸(𝑎𝑋 + 𝑏) = 𝑎
∑︀

𝑘 𝑘𝑃 (𝑋 = 𝑘) + 𝑏
∑︀

𝑘 𝑃 (𝑋 = 𝑘)

𝐸(𝑎𝑋 + 𝑏) = 𝑎𝐸(𝑥) + 𝑏 * 1 = 𝑎𝐸(𝑥) + 𝑏

22 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Law of the Unconscious Statistician

IF X with pdf 𝑓𝑥(𝑥) and g is a function Find [()]

Let Y=g(X). The pdf for Y is:

𝑓𝑌 (𝑦) = 𝑓𝑋
(︀
𝑔−1(𝑦)

)︀
·
⃒⃒⃒
𝑑
𝑑𝑦 𝑔

−1(𝑦)
⃒⃒⃒

= So, 𝐸[𝑔(𝑋)] = 𝐸[𝑌] =
∫︀∞
−∞ 𝑦 · 𝑓𝑌 (𝑦)𝑑𝑦

=
∫︀∞
−∞ 𝑦 · 𝑓𝑥

(︀
𝑔−1(𝑦)

)︀
·
⃒⃒⃒
𝑑
𝑑𝑦 𝑔

−1(𝑦)
⃒⃒⃒
𝑑𝑦

Let 𝑥 = 𝑔−1(𝑦). Then 𝑑𝑥 = 𝑑
𝑑𝑦 𝑔

−1(𝑦)𝑑𝑦

𝐸[𝑔(𝑋)] =
∫︀∞
−∞ 𝑔(𝑥)𝑓𝑋(𝑥))𝑑𝑥

1.4.8 Variance

• Measures how far we expect our random variable to be from the mean.

• Measures of spread of a distribution.

• Variance is a measure of dispersion.

Denoted by

𝜎2 or 𝑉 (𝑋).

𝑉 (𝑋) = 𝐸[(𝑋 − 𝐸[𝑋])2] = 𝐸[(𝑋 − 𝜇)2] = 𝐸[𝑋2]− 𝐸[𝑋]2

To better understand the definition of variance, we can break up its calculation in several steps:

1. Compute the expected value of 𝑋 , denoted by E[𝑋].

2. Construct a new random variable 𝑌 = 𝑋 − E[𝑋] equal to the deviation of 𝑋 from its expected value.

3. Take the square 𝑌 2 = (𝑋 −E[𝑋])2 which is a measure of distance of 𝑋 from its expected value (the further 𝑋
is from E[𝑋], the larger 𝑌 2

)︀
4. Finally, compute the expectation of 𝑌 2 to know the average distance:

E
[︀
𝑌 2
]︀

= E
[︀
(𝑋 − E[𝑋])2

]︀
= Var[𝑋]

From these steps we can easily see that

• variance is always positive because it is the expected value of a squared number.

• the variance of a constant variable 𝑋 (i.e., a variable that always takes on the same value) is zero; in this case,
we have that 𝑋 = E[𝑋], 𝑌 2 = 0 and E

[︀
𝑌 2
]︀

= 0

• the larger the distance 𝑌 2 is on average, the higher the variance.

1.4. Random Variables 23

ml_notes.akkefa.com, Release 0.0.1

For continuous rv

If X is a continuous random variable, the variance is defined by the integral of the probability density function. 𝑉 (𝑋) =∫︀∞
−∞(𝑥− 𝜇𝑥)2𝑓(𝑥)𝑑𝑥

𝑉 (𝑋) =
∫︀∞
−∞(𝑥− 𝜇𝑥)2𝑓(𝑥)𝑑𝑥

=
∫︀∞
−∞

(︀
𝑥2 − 2𝜇𝑥𝑥 + 𝜇2

𝑥

)︀
𝑓(𝑥)𝑑𝑥

=
∫︀∞
−∞ 𝑥2𝑓(𝑥)𝑑𝑥− 2𝜇𝑥

∫︀∞
−∞ 𝑥𝑓(𝑥)𝑑𝑥 + 𝜇2

𝑥

∫︀∞
−∞ 𝑓(𝑥)𝑑𝑥

𝑉 (𝑋) = 𝐸(𝑋2)− 𝐸(𝑋)2

Properties

Addition to a constant

Let 𝑎 ∈ R be a constant and let 𝑋 be a random variable.

𝑉 𝑎𝑟[𝑎 + 𝑋] = 𝑉 𝑎𝑟[𝑋]

Thanks to the fact that E[𝑎 + 𝑋] = 𝑎 + E[𝑋] (by linearity of the expected value), we have

Var[𝑎 + 𝑋] = E
[︀
(𝑎 + 𝑋 − E[𝑎 + 𝑋])2

]︀
= E

[︀
(𝑎 + 𝑋 − 𝑎− E[𝑋])2

]︀
= E

[︀
(𝑋 − E[𝑋])2

]︀
= Var[𝑋]

Multiplication by a constant

Let 𝑎 ∈ R be a constant and let 𝑥 be a random variable.

𝑉 𝑎𝑟[𝑎𝑋] = 𝑎2𝑉 𝑎𝑟[𝑋]

Thanks to the fact that 𝐸[𝑎𝑋] = 𝑎𝐸[𝑋] (by linearity of the expected value), we obtain

𝑉 𝑎𝑟[𝑎𝑋] = 𝐸
[︀
(𝑎𝑋 − 𝐸[𝑎𝑋])2

]︀
= 𝐸

[︀
(𝑎𝑋 − 𝑎𝐸[𝑋])2

]︀
= E

[︀
𝑎2(𝑋 − E[𝑋])2

]︀
= 𝑎2E

[︀
(𝑋 − E[𝑋])2

]︀
= 𝑎2 Var[𝑋]

Find Var[aX] = ?

Let Y = aX. Then, 𝜇𝑦 = 𝐸[𝑌] = 𝐸[𝑎𝑋] = 𝐸[𝑎𝜇𝑥] = 𝑎𝐸[𝜇𝑥] = 𝑎𝐸[𝑋]

==> 𝑉 𝑎𝑟[𝑎𝑋] = 𝑉 𝑎𝑟[𝑌] = 𝑉 𝑎𝑟[(𝑌 − 𝜇𝑦)2] = 𝑎2𝑉 𝑎𝑟[(𝑋 − 𝜇𝑥)2] = 𝑎2𝑉 (𝑋)

For Function

𝑉 (𝑔(𝑋)) =

{︃∑︀
𝑘(𝑔(𝑘)− 𝐸(𝑔(𝑋)))2𝑃 (𝑋 = 𝑘), 𝑋 discrete∫︀∞

−∞(𝑔(𝑥)− 𝐸(𝑔(𝑋)))2𝑓(𝑥)𝑑𝑥, 𝑋 continuc

24 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Find V(a X+b)

𝑉 (𝑎𝑋 + 𝑏) = 𝐸[(𝑎𝑋 + 𝑏− 𝐸(𝑎𝑋 + 𝑏))2]

= 𝐸[(𝑎𝑥+ ̸ 𝑏− 𝑎𝐸(𝑥)− ̸ 𝑏)2]

= 𝐸[(𝑎2(𝑥− 𝐸(𝑥))2]

= 𝑎2𝐸[(𝑥− 𝐸(𝑥)2] = 𝑎2𝑉 (𝑥)

Variance measure the spread the data B shift the data but doest not affect the spread.

Find Var[aX]

Let Y=aX. Then
𝜇𝑌 = 𝐸[𝑌] = 𝐸[𝑎𝑋] = 𝑎𝐸[𝑋] = 𝑎𝜇𝑋

𝑉 𝑎𝑟[𝑎𝑋] = 𝑉 𝑎𝑟[𝑌] = 𝐸
[︁
(𝑌 − 𝜇𝑌)

2
]︁

= 𝑎2𝐸
[︁
(𝑋 − 𝜇𝑋)

2
]︁

= 𝑎2𝑉 𝑎𝑟[𝑋]

Find Var[X + Y]

𝑉 𝑎𝑟[𝑋 + 𝑌] = 𝑉 𝑎𝑟[𝑋] + 𝑉 𝑎𝑟[𝑌]

• We will see that this is true if X and Y are independent.

• Need concept of “covariance”.

1.4.9 Standard Deviation

The standard deviation is the square root of the variance. 𝜎𝑥 =
√︀

𝑉 (𝑋)

1.4.10 Indicator function

The indicator function of an event is a random variable that takes

• value 1 when the event happens;

• value 0 when the event does not happen.

Let A = Set of real numbers

𝐼𝐴(𝑥) =

{︃
1, if 𝑥 ∈ 𝐴

0, if 𝑥 /∈ 𝐴

Other definition

The indicator function of a subset A of a set X is a function.

Indicator function𝐴(𝑋) = 1𝐴(𝑥) =

{︃
1, if 𝐴 ∩𝑋 ̸= ∅
0, otherwise

Notation= 1𝐴(𝑥)

1.4. Random Variables 25

ml_notes.akkefa.com, Release 0.0.1

1.4.11 Random Sample

A collection of random variables is independent and identically distributed if each random variable has the same prob-
ability distribution as the others and all are mutually independent.

Random Sample =X1, 𝑋2, 𝑋3, ..., 𝑋𝑛

Suppose that 𝑋1, 𝑋2, 𝑋3, ..., 𝑋𝑛 is a random sample from the Normal distribution with parameters 𝜇 and 𝑠𝑖𝑔𝑚𝑎2.
Mu and sigma are same for all random variables

𝑋1, 𝑋2, . . . , 𝑋𝑛
iid∼ 𝑁(𝜇, 𝜎2)

Suppose that 𝑋1, 𝑋2, 𝑋3, ..., 𝑋𝑛 is a random sample from the gamma distribution with parameters 𝑎𝑙𝑝ℎ𝑎 and 𝛽.

𝑋1, 𝑋2, . . . , 𝑋𝑛
iid∼ Γ(𝛼, 𝛽)

Example

A good example is a succession of throws of a fair coin: The coin has no memory, so all the throws are independent.
And every throw is 50:50 (heads:tails), so the coin is and stays fair - the distribution from which every throw is drawn,
so to speak, is and stays the same: identically distributed.

Independent and identically distributed random variables (IID)

Random Sample == IID

1.5 Discrete Distributions

A discrete distribution is a distribution of data in statistics that has discrete values. Discrete values are countable, finite,
non-negative integers, such as 1, 10, 15, etc.

1.5.1 Bernoulli Distribution

The Bernoulli distribution is a univariate discrete distribution used to model random experiments that have binary
outcomes.

Bernoulli Random Variable

A Bernoulli RV 𝑋 ∼ 𝐵𝑒𝑟𝑛(𝑝) is a random variable that is either 0 or 1 with probability 𝑝 or 1 − 𝑝 respectively.
Suppose that you perform an experiment with two possible outcomes: either success or failure.

Let X be a discrete random variable. 𝑥 ∈ 0, 1

𝑓𝑥(𝑥) = 𝑃 (𝑋 = 𝑥) =

⎧⎪⎨⎪⎩
1− 𝑝, if x = 0
𝑝, if x = 1
0, otherwise

26 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

P.M.F

𝑃 (𝑋 = 1) = 𝑝 (1.1)
𝑃 (𝑋 = 0) = 1− 𝑝(1.2)

Using the indicator function notation

𝐼𝐴(𝑥) =

{︃
1, if 𝑥 ∈ 𝐴

0, if 𝑥 /∈ 𝐴

𝑃 (𝑋 = 𝑥) = 𝑝𝑥(1− 𝑝)1−𝑥 · 𝐼{0,1}(𝑥)

Mean (Expected Value)

The expected value of a Bernoulli random variable X is

𝐸[𝑋] = 𝑝

Proof

(1.3)

𝐸[𝑋] =
∑︁
𝑥

𝑘𝑃 (𝑋 = 𝑥)(1.4)

= 0 * 𝑃 (𝑥 = 0) + 1 * 𝑃 (𝑥 = 1)(1.5)
= 0 * (1− 𝑝) + 1 * (𝑝)(1.6)
= 𝑝(1.7)

Variance

The variance of a Bernoulli random variable X is

𝑉 𝑎𝑟[𝑋] = 𝑝(1− 𝑝)

Proof

𝐸(𝑋2) =
∑︀

𝑘 𝑘
2𝑃 (𝑋 = 𝑘) = 12 * 𝑝 = 𝑝

𝑉 (𝑋) = 𝐸[𝑋2]− 𝐸[𝑋]2

= 𝑝− 𝑝2

= 𝑝(1− 𝑝)

1.5. Discrete Distributions 27

ml_notes.akkefa.com, Release 0.0.1

1.5.2 Geometric Distribution

The geometric distribution is a discrete probability distribution that calculates the probability of the first success oc-
curring during a specific trial.

The geometric distribution is the probability distribution of the number of failures we get by repeating a Bernoulli
experiment until we obtain the first success.

Geometric Random Variable

Definition 1

A geometric rv 𝑋 ∼ 𝐺𝑒𝑜𝑚(𝑝) consists of

• independent Bernoulli trials,

• each with the same probability of success p or Failure (1-p),

• repeated until the first success is obtained.

Definition 2

The geometric rv is the distribution of the number of trials needed to get the first success in repeated independent
Bernoulli trials.

Example If we toss a coin until we obtain head, the number of tails before the first head has a geometric distribution.

Attention: It can also define as number of failures before first success.

Parameter

The geometric distribution has one parameter, p = the probability of success for each trial. You denote the distribution
as G(p), which indicates a geometric distribution with a success probability of p.

Uses

• Six in a series of die rolls?

• Person to support a law during a repeated sampling for an interview?

• Product to have a defect in a random sample from an assembly line?

• Successful attempt for a project or task?

Properties

1. Each trial is identical, and can result in a success or failure.

2. The probability of success, p, is constant from one trial to the next.

3. The trials are independent, so the outcome on any particular trial does not influence the outcome of any other
trial.

4. Trials are repeated until the first success.

28 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

P.M.F

The sample space of geometric random variable is

𝑆 = {1, 01, 001, 0001, 00001, 000001, . . . }

Bernoulli trail success = 1 = P
Bernoulli trail failure = 0 = 1 - P

𝑃 (𝑋 = 1) = 𝑝
𝑃 (𝑋 = 2) = (1− 𝑝)𝑝
𝑃 (𝑋 = 3) = (1− 𝑝)(1− 𝑝)𝑝
𝑃 (𝑋 = 4) = (1− 𝑝)(1− 𝑝)(1− 𝑝)𝑝 = failure, failure, failure, Success
𝑃 (𝑋 = 5) = (1− 𝑝)4𝑝
𝑃 (𝑋 = 𝑥) = (1− 𝑝)𝑥−1𝑝

𝑓(𝑥) = 𝑃 (𝑋 = 𝑥) = (1− 𝑝)𝑥−1𝑝 𝑓𝑜𝑟 𝑥 = 1, 2, 3, 4, 5, . . .

𝑓(𝑥) = 𝑃 (𝑋 = 𝑥) = (1− 𝑝)𝑥−1 · 𝑝 · 𝐼{1,2,3,...}(𝑥)

Mean (Expected Value)

The expected value of a geometric random variable X is

𝐸[𝑋] =

∞∑︁
𝑘=1

𝑘𝑃 (𝑋 = 𝑘)

=

∞∑︁
𝑘=1

𝑘(1− 𝑝)𝑘−1𝑝

=
1

𝑝

Variance

The expected value of a geometric random variable X is

𝑉 (𝑋) = 𝐸[𝑋2]− 𝐸[𝑋]2

=
1− 𝑝

𝑝2

Interview Question

Q: On each day we play a lottery in which the probability of winning is
1𝑊ℎ𝑎𝑡𝑖𝑠𝑡ℎ𝑒𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑣𝑎𝑙𝑢𝑒𝑜𝑓𝑡ℎ𝑒𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑑𝑎𝑦𝑠𝑡ℎ𝑎𝑡𝑤𝑖𝑙𝑙𝑒𝑙𝑎𝑝𝑠𝑒𝑏𝑒𝑓𝑜𝑟𝑒𝑤𝑒𝑤𝑖𝑛𝑓𝑜𝑟𝑡ℎ𝑒𝑓𝑖𝑟𝑠𝑡𝑡𝑖𝑚𝑒?

Answer: Each time we play the lottery, the outcome is a Bernoulli random variable (equal to 1 if we win), with parameter
𝑝 = 0.01. Therefore, the number of days before winning is a geometric random variable with parameter 𝑝 = 0.01. Its
expected value is

𝐸[𝑋] =
1

𝑝
=

1

0.01
= 100

1.5. Discrete Distributions 29

ml_notes.akkefa.com, Release 0.0.1

1.5.3 Binomial Distribution

The binomial distribution is a discrete probability distribution that calculates the probability an event will occur a
specific number of times in a set number of opportunities.

Binomial Random Variable

Definition 1

A binomial rv 𝑋 ∼ 𝐵𝑖𝑛(𝑛, 𝑝) is a random variable that is the number of successes in n independent Bernoulli trials,
each with probability p. The probability of success is p. The probability of failure is 1-p. The number of trials is n.

Definition 2

The binomial distribution is the distribution of the number of successes = X in a fixed number = n of inde-
pendent Bernoulli trials.

Parameters

The binomial distribution has two parameters, n and p.

• n: the number of trials.

• p: the event or success probability.

Uses

Use the binomial distribution when your outcome is binary. Binary outcomes have only two possible values that are
mutually exclusive.

• Six heads when you toss the coin ten times?

• 12 women in a sample size of 20?

• Three defective items in a batch of 100?

• Two flu infections over 20 years?

Properties

1. Experiment is n trials (n is fixed in advance)

2. Trials are identical and result in a success or a failure (i.e. Bernoulli trials) with P(success) = p and P(failure) =
1 - p.

3. Trials are independent (outcome of one trial does not influence any other)

30 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

P.M.F

The sample space of binomial random variable is

𝑆 = {(𝑥1, 𝑥2, . . . , 𝑥𝑛) | 𝑥𝑖 =

{︂
1 if success
0 if failure

𝑓(𝑥) = 𝑃 (𝑋 = 0) = 𝑃 ({00 · · · 0}) = (1− 𝑝)𝑛

𝑓(𝑥) = 𝑃 (𝑋 = 1) = 𝑃 ({10 · · · 0, 0100 . . . , 0 · · · 01}) = 𝑛 * 𝑝 * (1− 𝑝)𝑛−1

𝑓(𝑥) = 𝑃 (𝑋 = 2) = 𝑃 ({11 · · · 0, 0110 . . . , 00 · · · 11}) =
(︀
𝑛
2

)︀
𝑝2(1− 𝑝)𝑛−2

Explanation P(X=2): Among n number of fixed trials, we have 2 bernoulli trials successes with probability P and
rest are failures bernoulli trails with probability (1-p). So, we need to choose 2 from n to get the exact probability of
success.

𝑓(𝑥) = 𝑃 (𝑋 = 𝑥) =

(︂
𝑛

𝑥

)︂
𝑝𝑥(1− 𝑝)𝑛−𝑥 · 𝐼{1,2,3,...}(𝑥)

Where k = 1 (success) and n-k = 0 (failure).

Suppose n = 4

P(𝑋 = 3) = P(SSSF or SSFS or SFSS or FSSS)

Binomial Theorem∑︀𝑛
𝑘=0

(︀
𝑛
𝑘

)︀
𝑝𝑘(1− 𝑝)𝑛−𝑘 = 1

Mean (Expected Value)

The expected value of a binomial random variable X is

𝐸[𝑋] =
∑︁
𝑘

𝑘𝑃 (𝑋 = 𝑘)

=

𝑛∑︁
𝑘=0

𝑘

(︂
𝑛

𝑘

)︂
𝑝𝑘(1− 𝑝)𝑛−𝑘

= 𝑛 * 𝑝

Proof

= E [
∑︀𝑛

𝑖=1 𝑌𝑖] (representation as a sum of 𝑛 independent Bernoulli r.v.)
=
∑︀𝑛

𝑖=1 E [𝑌𝑖] (linearity of the expected value)
=
∑︀𝑛

𝑖=1 𝑝 (expected value of a Bernoulli r.v.)
= 𝑛𝑝

RECALL: Bern(p) has expected value p. x1, x2 . . . xn are independent bern p. so 𝑠𝑢𝑚𝑛
𝑘=1𝑋𝑛 =

𝑠𝑢𝑚𝑛
𝑘=1𝐸[𝑋𝑛] = 𝑛 * 𝑝

1.5. Discrete Distributions 31

ml_notes.akkefa.com, Release 0.0.1

Variance

The variance of a binomial random variable X is

𝑉 (𝑋) = 𝐸(𝑋2)− 𝐸(𝑋)2 = 𝑛 * 𝑝 * (1− 𝑝)

Recall: Bern(p) has variance p * (1-p).

1.5.4 Negative Binomial Distribution

The negative binomial distribution is almost the same as a binomial distribution with one difference

• Binomial distribution has a fixed number of trials.

Repeat independent Bernoulli trials until a total of r successes is obtained. The negative binomial random variable X
counts the number of failures before the rth success.

Negative Binomial Random Variable

The negative binomial rv 𝑋 ∼ 𝑁𝐵(𝑟, 𝑝) is the distribution of the number of trials = X needed to get a fixed
number of successes = r.

Properties

1. The number of successes r is fixed in advance.

2. Trials are identical and result in a success or a failure (Bernoulli trials with P(success) = p and P(failure) = 1-p.

3. Trials are independent (outcome of one trial does not influence any other)

PMF

𝑆 = {(𝑥1, 𝑥2, . . . , 𝑥𝑛) | 𝑥𝑖 =

{︂
1 if success on ith trail
0 if failure ith trail 𝑎𝑛𝑑

∑︀
𝑖=1 = 𝑟

𝑃 (𝑦 = 0) = 𝑃 ({11111}) = (𝑝)5

𝑃 (𝑌 = 1) = 𝑃 ({011111, 101111, 110111, 111011, 111101}) =
(︀
5
4

)︀
𝑝5(1− 𝑝)5−4

𝑃 (𝑌 = 2) =
(︀
6
4

)︀
𝑝5(1− 𝑝)5−4

𝑃 (𝑋 = 𝑘) =
(︀
𝑘+𝑟−1
𝑟−1

)︀
(1− 𝑝)𝑘𝑝𝑟

Mean (Expected Value)

𝐸(𝑋) =
∑︀

𝑘 𝑘𝑃 (𝑋 = 𝑘)

𝐸(𝑋) = 𝑟(1−𝑝)
𝑝

32 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Variance

𝑉 (𝑋) = 𝑟(1−𝑝)
𝑝2

Relationship between Geometric and Negative Binomial rv

𝑋 ∼ 𝐺𝑒𝑜𝑚(𝑝)

= Repeated, independent, identical, Bernoulli trails util first successes.

𝑌 ∼ 𝑁𝐵(1, 𝑝)

= Count the number of failure until first success util first successes. =

⏟ ⏞
𝐹𝑎𝑖𝑙𝑢𝑟𝑒

⏟ ⏞
𝐹𝑎𝑖𝑙𝑢𝑟𝑒

𝑠𝑢𝑐𝑐𝑒𝑠𝑠

Note: Y = X - 1. then E(Y) = E(X) - 1 = 1/p - 1 = 1−𝑝
𝑝

𝑁𝐵(𝑟, 𝑝) = ⏟ ⏞
𝐹𝑎𝑖𝑙𝑢𝑟𝑒

⏟ ⏞
𝐹𝑎𝑖𝑙𝑢𝑟𝑒

𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ⏟ ⏞
𝐹𝑎𝑖𝑙𝑢𝑟𝑒

⏟ ⏞
𝐹𝑎𝑖𝑙𝑢𝑟𝑒

𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ⏟ ⏞
𝐹𝑎𝑖𝑙𝑢𝑟𝑒

⏟ ⏞
𝐹𝑎𝑖𝑙𝑢𝑟𝑒

𝑟𝑡ℎ𝑠𝑢𝑐𝑐𝑒𝑠𝑠

means we have stack geometric rv in a row rth time. that’s why we multiply by r in expected value and variance in NB
rv.

1.5.5 Poisson Distribution

The Poisson distribution is a discrete probability distribution that describes probabilities for counts of events that occur
in a specified observation space. It is named after Siméon Denis Poisson.

Suppose that an event can occur several times within a given unit of time. When the total number of occurrences of
the event is unknown, we can think of it as a random variable.

Poisson Random Variable

A Poisson rv 𝑋 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) is a discrete rv that describes the total number of events that happen in a certain time
period.

Parameter

The Poisson distribution is defined by a single parameter, lambda (),

which is the mean number of occurrences during an observation unit. A rate of occurrence is simply the mean count
per standard observation period. For example, a call center might receive an average of 32 calls per hour.

1.5. Discrete Distributions 33

ml_notes.akkefa.com, Release 0.0.1

Uses

1. # of vehicles crossing a bridge in one day

2. # of gamma rays hitting a satellite per hour

3. # of cookies sold at a bake sale in one hour

4. # of customers arriving at a bank in a week

PMF

A discrete random variable X has Poisson distribution with parameter (𝜆 > 0) if the probability mass function of X is

𝑓(𝑥) = 𝑃 (𝑋 = 𝑥) =

{︃
𝑒−𝜆𝜆𝑥

𝑥! , 𝑥 = 0, 1, 2, . . .

0 , otherwise

which may also be written as

𝑓(𝑥) =
𝑒−𝜆𝜆𝑥

𝑥!
𝐼{0,1,2,...}(𝑥)

where

• k is the number of occurrences (𝑘 = 0, 1, 2 . . .) It could be zero because nothing happened in that time period.

• e} is (e = 2.71828..)

While this pmf might appear to be highly structured, it really is the epitome of randomness. Imagine taking a 20 acre
plot of land and dividing it into 1 square foot sections. (There are 871,200 sections!) Suppose you were able to scatter
5 trillion grass seeds on this land in a completely random way that does not favor one section over another. One can
show that the number of seeds that fall into any one section follows a Poisson distribution with some parameter . More
specifically, one can show that the Poisson distribution is a limiting case of the binomial distribution when n gets really
large and p get really small. “Success” here is the event that any given seed falls into one particular section. We then
want to count the number of successes in 5 trillion trials.

In general, the Poisson distribution is often used to describe the distribution of rare events in a large population.

All probabilities sum to 1∑︀∞
𝑘=0 𝑃 (𝑋 = 𝑘) =

∑︀∞
𝑘=0

𝜆𝑘

𝑘! 𝑒
−𝜆 = 𝑒−𝜆

∑︀∞
𝑘=0

𝜆𝑘

𝑘! = 𝑒−𝜆 * 𝑒𝜆 = 1

Mean (Expected Value)

𝐸(𝑋) =
∑︀∞

𝑘=0 𝑘𝑃 (𝑋 = 𝑘) =
∑︀∞

𝑘=0 𝑘
𝜆𝑘

𝑘! 𝑒
−𝜆 = 𝜆

∑︀∞
𝑘=1

𝜆𝑘−1

(𝑘−1)!𝑒
−𝜆 = 𝜆

𝐸
(︀
𝑋2
)︀

=
∑︀∞

𝑘=0 𝑘
2𝑃 (𝑋 = 𝑘) =

∑︀∞
𝑘=0 𝑘

2 𝜆𝑘

𝑘! 𝑒
−𝜆 = 𝜆(𝜆 + 1)𝑒

Variance

𝑉 (𝑋) = 𝐸
(︀
𝑋2
)︀
− (𝐸(𝑋))2 = 𝜆(𝜆 + 1)− 𝜆2 = 𝜆

34 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

1.6 Continuous Distributions

1.6.1 Definition

A random variable is continuous if possible values comprise either a single interval on the number line or a union of
disjoint intervals. X = f(x) is the probability density function of the continues random variable X.

We model a continuous random variable with a curve f(x), called a probability density function (pdf).

Applications

• In the study of the ecology of a lake, a rv X could be the depth measurements at randomly chosen locations.

• In a study of a chemical reaction, Y could be the concentration level of a particular chemical in solution.

• In a study of customer service, W could be the time a customer waits for service.

• f(x) represents the height of the curve at point x.

• For continuous random variables probabilities are areas under the curve.

Attention: We can’t model continuous random variable using discrete rv method.

𝑃 (𝑎 ≤ 𝑋 ≤ 𝑏) =

∫︁ 𝑏

𝑎

𝑓(𝑥)𝑑𝑥

Properties

1. The probability density function 𝑓 : (−∞,∞)→ [0,∞) so 𝑓(𝑥) ≥ 0.

2. 𝑃 (−∞ < 𝑋 <∞) =
∫︀∞
−∞ 𝑓(𝑥)𝑑𝑥 = 1 = 𝑃 (𝑆)

3. 𝑃 (𝑎 ≤ 𝑋 ≤ 𝑏) =
∫︀ 𝑏

𝑎
𝑓(𝑥)𝑑𝑥

Note: 𝑃 (𝑋 = 𝑎) =
∫︀ 𝑎

𝑎
𝑓(𝑥)𝑑𝑥 = 0 for all real numbers 𝑎

1.6. Continuous Distributions 35

ml_notes.akkefa.com, Release 0.0.1

1.6.2 Uniform rv

Random variable 𝑋 ∼ 𝑈 [𝑎, 𝑏] has the uniform distribution on the interval [a, b] if its density function is

import torch
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import uniform

sns.set_theme(style="darkgrid")

random numbers from uniform distribution
n = 10000
start = 10
width = 20
data_uniform = uniform.rvs(size=n, loc = start, scale=width)
ax = sns.displot(data_uniform,

bins=100,
kde=True)

ax.set(xlabel='Uniform Distribution ', ylabel='Frequency')
plt.show()

36 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

𝑓(𝑥) =

⎧⎨⎩
1

𝑏−𝑎 for 𝑎 ≤ 𝑥 ≤ 𝑏,

0 for 𝑥 < 𝑎 or 𝑥 > 𝑏
=

1

𝑏− 𝑎
· 𝐼(𝑎,𝑏)(𝑥)

CDF

𝐹 (𝑥) = 𝑃 (𝑋 ≤ 𝑥) =

∫︁ 𝑥

−∞
𝑓(𝑡)𝑑𝑡

=

∫︁ 𝑥

𝑎

1

𝑏− 𝑎
𝑑𝑡

𝐹 (𝑥) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 for 𝑥 < 𝑎

𝑥−𝑎
𝑏−𝑎 for 𝑎 ≤ 𝑥 ≤ 𝑏

1 for 𝑥 > 𝑏

Expected Value and Variance

𝑓(𝑥) =

⎧⎨⎩
1

𝑏−𝑎 for 𝑎 ≤ 𝑥 ≤ 𝑏,

0 for 𝑥 < 𝑎 or 𝑥 > 𝑏

𝐸(𝑋) =

∫︁ 𝑏

𝑎

𝑥 · 1

𝑏− 𝑎
𝑑𝑥 =

1

𝑏− 𝑎

𝑥2

2

⃒⃒⃒⃒𝑏
𝑎

=
𝑏2 − 𝑎2

2(𝑏− 𝑎)
=

𝑏 + 𝑎

2

𝐸
(︀
𝑋2
)︀

=

∫︁ 𝑏

𝑎

𝑥2 1

𝑏− 𝑎
𝑑𝑥 =

1

𝑏− 𝑎

𝑥3

3

⃒⃒⃒⃒𝑏
𝑎

=
𝑏3 − 𝑎3

3(𝑏− 𝑎)
=

𝑏2 + 𝑎𝑏 + 𝑎2

3

𝑉 (𝑋) = 𝐸
(︀
𝑋2
)︀
− (𝐸(𝑋))2

=
𝑏2 + 𝑎𝑏 + 𝑎2

3
−
(︂
𝑏 + 𝑎

2

)︂2

=
(𝑏− 𝑎)2

12

Example

For random variable 𝑋 ∼ 𝑈(0, 23). Find P(2 < X < 18)

𝑃 (2 < 𝑋 < 18) = (18− 2) · 1
23−0 = 16

23

1.6.3 Exponential Distribution

The exponential distribution is a continuous probability distribution that often concerns the amount of time until some
specific event happens. It is a process in which events happen continuously and independently at a constant average
rate. The exponential distribution has the key property of being memoryless.

1.6. Continuous Distributions 37

ml_notes.akkefa.com, Release 0.0.1

Applications

The family of exponential distributions provides probability models that are widely used in engineering and science
disciplines to describe time-to-event data.

• Time until birth

• Time until a light bulb fails

• Waiting time in a queue

• Length of service time

• Time between customer arrivals

• the amount of money spent by the customer

• Calculating the time until the radioactive particle decays

PDF

The continuous random variable, say X is said to have an exponential distribution, if it has the following probability
density function:

𝑓(𝑥;𝜆) =

⎧⎨⎩𝜆𝑒−𝜆𝑥 𝑥 ≥ 0,

0 𝑥 < 0.
= 𝜆𝑒−𝜆𝑥𝐼(0,∞)(𝑥)

is called the distribution rate.

import torch
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import expon

sns.set_theme(style="darkgrid")

data_expon = expon.rvs(scale=1,loc=0,size=1000)
ax = sns.displot(data_expon,

kde=True,
bins=100)

ax.set(xlabel='Exponential Distribution', ylabel='Frequency')
plt.show()

38 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Expected Value

The mean of the exponential distribution is calculated using the integration by parts.

𝐸[𝑋] =

∫︁ ∞

0

𝑥𝑓(𝑥)𝑑𝑥 =

∫︁ ∞

0

𝑥𝜆𝑒−𝜆𝑥𝑑𝑥

= 𝜆

[︂⃒⃒⃒⃒
−𝑥𝑒−𝜆𝑥

𝜆

⃒⃒⃒⃒∞
0

+
1

𝜆

∫︁ ∞

0

𝑒−𝜆𝑥𝑑𝑥

]︂
= 𝜆

[︂
0 +

1

𝜆

−𝑒−𝜆𝑥

𝜆

]︂∞
0

= 𝜆
1

𝜆2

=
1

𝜆

𝐸[𝑋2] =

∫︁ ∞

0

𝑥2𝑓(𝑥)𝑑𝑥

=

∫︁ ∞

0

𝑥2𝜆𝑒−𝜆𝑥𝑑𝑥

=
2

𝜆2

1.6. Continuous Distributions 39

ml_notes.akkefa.com, Release 0.0.1

Variance

To find the variance of the exponential distribution, we need to find the second moment of the exponential distribution

𝑉 (𝑋) = 𝐸(𝑋2)− 𝐸(𝑋)2

=
2

𝜆2
− (

1

𝜆
)2

=
1

𝜆2

Properties

The most important property of the exponential distribution is the memoryless property. This property is also applicable
to the geometric distribution.

1.6.4 Normal (Gaussian) Distribution

It is often called Gaussian distribution, in honor of Carl Friedrich Gauss (1777-1855), an eminent German mathe-
matician who gave important contributions towards a better understanding of the normal distribution.

Normal Random Variable

A continuous random variable 𝑋 ∼ 𝑁(𝜇, 𝜎2) has the normal distribution with parameters 𝜇 and 𝜎2 if its density is
given by

𝑓(𝑥) =
1√
2𝜋𝜎

𝑒−(𝑥−𝜇)2/2𝜎2 for −∞ < 𝑥 <∞

A normal distribution is a distribution that is solely dependent on two parameters of the data set: mean and the standard
deviation of the sample.

Attention: This characteristic of the distribution makes it extremely simple for statisticians and hence any vari-
able that exhibits normal distribution is feasible to be forecasted with higher accuracy. Essentially, it can help in
simplying the model.

40 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Parameters

• Mu is a location parameter. If you change the value of Mu, the entire bell curve is going to slide around.

• If you increase Sigma squared, it’s going to get fatter and therefore shorter because the total area is one, So if it
gets fatter, it has to come down. If Sigma squared gets smaller, it’s going to get really tall and thin.

Properties

Normal distribution is simple to explain: Why?

The reasons are:

1. The mean, mode, and median of the distribution are equal.

2. We only need to use the mean and standard deviation to explain the entire distribution.

• f(x) is symmetric around 𝑥 = 𝜇 as a consequence, deviations from the mean having the same magnitude.

• f(x) > 0 for all 𝑥 and
∫︀∞
−∞ 𝑓(𝑥)𝑑𝑥 = 1.

• 𝜇 + 𝜎 and 𝜇− 𝜎 are inflection points on f(x).

• Mean and median are equal; both are located at the center of the distribution.

Why is it so important

The normal distribution is extremely important because:

• many real-world phenomena involve random quantities that are approximately normal

• it plays a crucial role in the Central Limit Theorem, one of the fundamental results in statistics;

• its great analytical tractability makes it very popular in statistical modelling.

The following variables are close to normally distributed variables:

1. Height of a population

2. Blood pressure of adult human

3. Position of a particle that experiences diffusion

4. Measurement errors

5. Residuals in regression

6. Shoe size of a population

7. Amount of time it takes for employees to reach home

8. A large number of educational measures

1.6. Continuous Distributions 41

ml_notes.akkefa.com, Release 0.0.1

But how are so many variables approximately normally distributed?

Let’s consider that the height of a population is a random variable. We can take a sample of heights, plot its distribution
and calculate the sample mean. When we repeat this experiment whilst we increase the number of samples then the
mean of the samples will end up being very close to normality.

This is known as the Central Limit Theorem.

Probability Density Function

If we plot the normal distribution density function, it’s curve has the following characteristics:

• Mean is the center of the curve. This is the highest point of the curve as most of the points are at the mean.

• There is an equal number of points on each side of the curve. The center of the curve has the most number of
points.

• The total area under the curve is the total probability of all of the values that the variable can take.

• The total curve area is therefore 100%

• Approximately 68.2% of all of the points are within the range -1 to 1 standard deviation.

• About 95.5% of all of the points are within the range -2 to 2 standard deviations.

42 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

• About 99.7% of all of the points are within the range -3 to 3 standard deviations.

This allows us to easily estimate how volatile a variable is and given a confidence level, what its likely value is going
to be. As an instance, in the grey bell-shaped curve above, there is a 68.2% chance that the value of the variable will
be within 101–99.

Normal Probability Distribution Function

𝑓(𝑥) =
1√
2𝜋𝜎

𝑒−(𝑥−𝜇)2/2𝜎2

=
1

𝜎
√

2𝜋
𝑒−

1
2 (𝑥−𝜇

𝜎)
2

for −∞ < 𝑥 <∞

import torch
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import norm

sns.set_theme(style="darkgrid")
sample = torch.normal(mean = 8, std = 16, size=(1,1000))

sns.displot(sample[0], kde=True, stat = 'density',)
plt.axvline(torch.mean(sample[0]), color='red', label='mean')

plt.show()

1.6. Continuous Distributions 43

ml_notes.akkefa.com, Release 0.0.1

norm.pdf returns a PDF value. The following is the PDF value when =1, =0, =1.

We graph a PDF of the normal distribution using scipy, numpy and matplotlib. We use the domain of 4<<4, the range
of 0<()<0.45, the default values =0 and =1. plot(x-values,y-values) produces the graph.

print(norm.pdf(x=1.0, loc=0, scale=1))

x = torch.arange(-4,4,0.001)
fig, ax = plt.subplots()

ax.set_title('N(0,1^2)')
ax.set_xlabel('x')
ax.set_ylabel('f(x)')
ax.plot(x, norm.pdf(x))
ax.set_ylim(0,0.45)
plt.show()

0.24197072451914337

44 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

A normal curve is smooth bell-shaped. It is symmetrical about the = and has a maximum point at =.

Normal distribution PDF with different standard deviations

Let’s plot the probability distribution functions of a normal distribution where the mean has different standard devia-
tions.

scipy.norm.pdf has keywords, loc and scale. The location (loc) keyword specifies the mean and the scale (scale) keyword
specifies the standard deviation.

fig, ax = plt.subplots()
x = torch.arange(-4,4,0.001)

stdvs = [1.0, 2.0, 3.0, 4.0]
for s in stdvs:

ax.plot(x, norm.pdf(x,scale=s), label='stdv=%.1f' % s)

ax.set_xlabel('x')
ax.set_ylabel('pdf(x)')
ax.set_title('Normal Distribution')
ax.legend(loc='best', frameon=True)
ax.set_ylim(0,0.45)
ax.grid(True)

1.6. Continuous Distributions 45

ml_notes.akkefa.com, Release 0.0.1

Normal distribution PDF with different means

Let’s plot the probability distribution functions of a normal distribution where the mean has different values.

fig, ax = plt.subplots()
x = torch.linspace(-10,10,100)

means = [0.0, 1.0, 2.0, 5.0]
for mean in means:

ax.plot(x, norm.pdf(x,loc=mean), label='mean=%.1f' % mean)

ax.set_xlabel('x')
ax.set_ylabel('pdf(x)')
ax.set_title('Normal Distribution')
ax.legend(loc='best', frameon=True)
ax.set_ylim(0,0.45)
ax.grid(True)

46 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

The mean of the distribution determines the location of the center of the graph. As you can see in the above graph, the
shape of the graph does not change by changing the mean, but the graph is translated horizontally.

A cumulative normal distribution function

The cumulative distribution function of a random variable X, evaluated at x, is the probability that X will take a value
less than or equal to x. Since the normal distribution is a continuous distribution, the shaded area of the curve represents
the probability that X is less or equal than x.

fig, ax = plt.subplots()
for distribution curve
x= torch.arange(-4,4,0.001)

ax.plot(x, norm.pdf(x))
ax.set_title("Cumulative normal distribution")
ax.set_xlabel('x')
ax.set_ylabel('pdf(x)')
ax.grid(True)
for fill_between
px=torch.arange(-4,1,0.01)
ax.set_ylim(0,0.5)
ax.fill_between(px,norm.pdf(px),alpha=0.5, color='g')
for text
ax.text(-1,0.1,"cdf(x)", fontsize=20)

(continues on next page)

1.6. Continuous Distributions 47

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

plt.show()

Expected Value and Variance

𝐸(𝑋) = 𝜇

𝑉 (𝑋) = 𝜎2

Problems With Normality

Assuming normality has its own flaws. As an instance, we cannot assume that the stock price follows normal distribution
as the price cannot be negative. Therefore the stock price potentially follows a log of the normal distribution to ensure
it is never below zero.

We know that the daily returns can be negative, therefore the returns can at times follow a normal distribution. It is not
wise to assume that the variable follows a normal distribution without any analysis.

A variable can follow Poisson, Student-t, or Binomial distribution as an instance and falsely assuming that a variable
follows normal distribution can lead to inaccurate results.

48 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Identify the Normal RV?

Many methods exist for testing whether a variable has a normal distribution

1. Histogram

The histogram is a data visualization that shows the distribution of a variable. It is a bar graph that shows the frequency
of each value in the variable. The histogram is a graphical representation of the distribution of a variable.

sample = torch.normal(mean = 8, std = 16, size=(1,1000))
sample2 = torch.distributions.uniform.Uniform(2,3).sample([1,1000])

sns.displot(sample[0], kde=True,).set(title='Normal Distribution')
plt.axvline(torch.mean(sample[0]), color='red', label='mean')

sns.displot(sample2[0], kde=True,).set(title='Uniform Distribution')
plt.show()

1.6. Continuous Distributions 49

ml_notes.akkefa.com, Release 0.0.1

2. Box Plot

The Box Plot is another visualization technique that can be used for detecting non-normal samples.

The box plot is a graphical representation of the distribution of a variable. It is a graphical representation of the five-
number summary of a variable. The five-number summary is the minimum, first quartile, median, third quartile, and
maximum of a variable.

50 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

3. QQ Plot

QQ Plot stands for Quantile vs Quantile Plot, which is exactly what it does: plotting theoretical quantiles against the
actual quantiles of our variable.

The QQ Plot allows us to see deviation of a normal distribution much better than in a Histogram or Box Plot.

1.6.5 Standard Normal Distribution

The normal distribution with parameter values 𝜇 = 0 and 𝜎2 = 1 is called the standard normal distribution.

A rv with the standard normal distribution is denoted by 𝑍 ∼ 𝑁(0, 1)

If 𝑋 ∼ 𝑁
(︀
𝜇, 𝜎2

)︀
then

𝑓𝑋(𝑥) =
1√
2𝜋𝜎

𝑒−(𝑥−𝜇)2/2𝜎2

for −∞ < 𝑥 <∞

If 𝑍 ∼ 𝑁(0, 1) then

𝑓𝑍(𝑥) =
1√
2𝜋

𝑒−𝑥2/2 for −∞ < 𝑥 <∞

PDF

𝑓𝑍(𝑥) = 1√
2𝜋

𝑒−𝑥2/2 for −∞ < 𝑥 <∞

Cumulative distribution function

We use special notation to denote the cdf of the standard normal curve

𝐹 (𝑧) = Φ(𝑧) = 𝑃 (𝑍 ≤ 𝑧) =
∫︀ 𝑧

−∞
1√
2𝜋

𝑒−𝑥2/2𝑑𝑥

1.6. Continuous Distributions 51

ml_notes.akkefa.com, Release 0.0.1

Properties

1. The standard normal density function is symmetric about the y axis.

2. The standard normal distribution rarely occurs naturally.

3. Instead, it is a reference distribution from which information about other normal distributions can be obtained
via a simple formula.

4. The cdf of the standard normal, Φ(𝑧) can be found in tables and it can also be computed with a single command
in R.

5. As we’ll see, sums of standard normal random variables play a large role in statistical analysis.

Proposition

If 𝑋 ∼ 𝑁
(︀
𝜇, 𝜎2

)︀
, then 𝑋−𝜇

𝜎 ∼ 𝑁(0, 1)

𝑋−𝜇
𝜎 Shifted by 𝜇 or (Centered at zero) and scaled by 1

𝜎 that will give us variance of 1.

Z ∼ N(0, 1)⇒ 𝜎Z + 𝜇 ∼ N
(︀
𝜇, 𝜎2

)︀

52 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Example

Let 𝑋 ∼ 𝑁(2, 3)

𝑃 (𝑋 ≤ 4.1) = 𝑃

(︂
𝑋 − 𝜇

𝜎
≤ 4.1− 2√

3

)︂
= 𝑃 (𝑍 ≤ 1.21)

Proving this proposition

For any continuous random variable. Suppose we have Y rv, with Desnity function 𝑓𝑌 (𝑦)

We know

𝑃 (𝑦 6 𝑎) =
∫︀ 𝑎

−∞ 𝑓𝑦(𝑦)𝑑𝑦

What if

𝑃 (2𝑦 6 𝑎)

= Can’t really use the density function until we isolate y =

𝑃
(︀
𝑦 ≤ 𝑎

2

)︀
=
∫︀ 𝑎/2

−∞ 𝑓𝑦(𝑦)𝑑𝑦

This true for all transformation of Y.

With 𝑃
(︀
𝑥−𝜇
𝜎 ≤ 𝑎

)︀
= 𝑃 (𝑥 ≤ 𝑎𝜎 + 𝜇) =

∫︀ 𝑎𝜎+𝜇

𝑥
1√
2𝜋𝜎

𝑒−(𝑥−𝜇)2/2𝜎2

U subsitution

Let

𝑢 = 𝑥−𝜇
𝜎

𝑑𝑢 = 1
𝜎𝑑𝑥

SO =
∫︀ 𝑎

−∞
1√
2𝜋

𝑒−𝑢2/2𝑑𝑢 This is density function for N(0,1).

Examples

Find P(X<2) when N(3, 2)?

In norm.cdf, the location (loc) keyword specifies the mean and the scale (scale) keyword specifies the standard deviation.

from scipy.stats import norm

val = norm.cdf(x=2, loc=3, scale=2)

print(f"P(X<2) = {val}")

fig, ax = plt.subplots()

x= torch.arange(-4,10,0.001)
ax.plot(x, norm.pdf(x,loc=3,scale=2))
ax.set_title("N(3,2^2)")
ax.set_xlabel('x')

(continues on next page)

1.6. Continuous Distributions 53

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

ax.set_ylabel('pdf(x)')
ax.grid(True)
for fill_between
px=torch.arange(-4,2,0.01)
ax.set_ylim(0,0.25)
ax.fill_between(px,norm.pdf(px,loc=3,scale=2),alpha=0.5, color='g')
for text
ax.text(-0.5,0.02,round(val,2), fontsize=20)
plt.show()

P(X<2) = 0.3085375387259869

P(X ≤ 2) = P

(︂
X− 𝜇

𝜎
≤ 2− 3√

2

)︂
= P(Z ≤ 1.21)

≈ 0.30

R code: pnorm(1.2)

54 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Find P(X<4.1) when N(2, 3)?

Let 𝑋 ∼ 𝑁(2, 3). Then

𝑃 (𝑋 ≤ 4.1) = 𝑃

(︂
𝑋 − 𝜇

𝜎
≤ 4.1− 2√

3

)︂
= 𝑃 (𝑍 ≤ 1.21)

≈ 0.8868

R Code: pnorm(1.21)

z_score <- (4.1 - 2) / sqrt(3)
pnorm(z_score)

𝑋1, 𝑋2, . . . , 𝑋10
𝑖𝑑∼ 𝑁(2, 3)

𝑋 ∼ 𝑁
(︀
𝜇, 𝜎2/𝑛

)︀
= 𝑁(2, 3/10)

𝑃 (𝑋 ≤ 2.3) = 𝑃

(︃
𝑋 − 𝜇𝑋

𝜎𝑋

≤ 2.3− 2√︀
3/10

)︃
𝑋 − 𝜇

𝜎/
√
𝑛

=
= 𝑃 (𝑍 ≤ 0.5477)

≈ 0.7081

Interval between variables

To find the probability of an interval between certain variables, you need to subtract cdf from another cdf.

Let’s find (0.5<<2) with a mean of 1 and a standard deviation of 2.

print(norm(1, 2).cdf(2) - norm(1,2).cdf(0.5))

0.2901687869569368

𝑋 ∼ 𝑁
(︀
1, 22

)︀
, 𝑃 (0.5 < 𝑋 < 2)

fig, ax = plt.subplots()

for distribution curve
x= torch.arange(-6,8,0.001)
ax.plot(x, norm.pdf(x,loc=1,scale=2))
ax.set_title("N(1,2^2)")
ax.set_xlabel('x')
ax.set_ylabel('pdf(x)')
ax.grid(True)
px=torch.arange(0.5,2,0.01)
ax.set_ylim(0,0.25)
ax.fill_between(px,norm.pdf(px,loc=1,scale=2),alpha=0.5, color='g')
pro=norm(1, 2).cdf(2) - norm(1,2).cdf(0.5)
ax.text(0.2,0.02,round(pro,2), fontsize=20)
plt.show()

1.6. Continuous Distributions 55

ml_notes.akkefa.com, Release 0.0.1

P(Z > 1.25) ?

Let’s plot a graph.

fig, ax = plt.subplots()
x= torch.arange(-4,4,0.01)
gr4sf=norm.sf(x=1.25, loc=0, scale=1)
print(gr4sf)

ax.plot(x, norm.pdf(x,loc=0,scale=1))
ax.set_title("N(0,1^2)")

ax.set_xlabel('x')
ax.set_ylabel('pdf(x)')

ax.grid(True)
px=torch.arange(1.25,4,0.01)
#ax.set_ylim(0,0.15)
ax.fill_between(px,norm.pdf(px,loc=0,scale=1),alpha=0.5, color='g')
ax.text(1.25,0.02,"sf(x) %.2f" %(gr4sf), fontsize=20)
plt.show()

0.10564977366685535

56 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

we can use sf which is called the survival function and it returns 1-cdf.

If X = N(1, 4), find P(0 < X < 3.2)?

𝑃 (0 ≤ 𝑋 ≤ 3.2) =

∫︁ 3.2

0

𝑓𝑋(𝑥)𝑑𝑥

= 𝑃

(︂
0− 1

2
6

𝑥− 1

2
6

3.2− 1

2

)︂
= 𝑃

(︂
−1

2
≤ 𝑍 ≤ 1.1

)︂
= 𝑃 (𝑧 ≤ 1.1)− 𝑃

(︂
𝑧 < −1

2

)︂
= Φ(1.1)− Φ

(︂
−1

2

)︂
= .558

print(norm(1, 2).cdf(3.2) - norm(1,2).cdf(0))

1.6. Continuous Distributions 57

ml_notes.akkefa.com, Release 0.0.1

0.5557964003276304

fig, ax = plt.subplots()

for distribution curve
x= torch.arange(-6,8,0.001)
ax.plot(x, norm.pdf(x,loc=1,scale=2))
ax.set_title("N(1,2^2)")
ax.set_xlabel('x')
ax.set_ylabel('pdf(x)')
ax.grid(True)
px=torch.arange(0.5,2,0.01)
ax.set_ylim(0,0.25)
ax.fill_between(px,norm.pdf(px,loc=1,scale=2),alpha=0.5, color='g')
pro=norm(1, 2).cdf(3.5) - norm(1,2).cdf(0)
ax.text(0.2,0.02,round(pro,2), fontsize=20)
plt.show()

58 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

1.6.6 Gamma Distribution

The gamma distribution term is mostly used as a distribution which is defined as two parameters – shape parameter
and inverse scale parameter, having continuous probability distributions. Its importance is largely due to its relation to
exponential and normal distributions.

Gamma distributions have two free parameters, named as alpha () and beta (), where;

• = Shape parameter

• = Rate parameter (the reciprocal of the scale parameter)

The scale parameter is used only to scale the distribution. This can be understood by remarking that wherever the
random variable x appears in the probability density, then it is divided by . Since the scale parameter provides the
dimensional data, it is seldom useful to work with the “standard” gamma distribution, i.e., with = 1.

Gamma function:

The gamma function [10], shown by Γ(𝑥), is an extension of the factorial function to real (and complex) numbers.
Specifically, if 𝑛 ∈ {1, 2, 3, . . .}, then

Γ(𝑛) = (𝑛− 1)!

Probability Density Function

𝑓(𝑥) =
1

Γ(𝛼)
𝛽𝛼𝑥𝛼−1𝑒−𝛽𝑥

Mean

𝜇 = 𝐸[𝑋] =

∫︁ ∞

−∞
𝑥𝑓(𝑥)𝑑𝑥

=

∫︁ ∞

0

𝑥
1

Γ(𝛼)
𝛽𝛼𝑥𝛼−1𝑒−𝛽𝑥𝑑𝑥

=
𝛼

𝛽

Variance

𝜎2 = Var[𝑋] = 𝐸
[︀
(𝑋 − 𝜇)2

]︀
= 𝐸

[︀
𝑋2
]︀
− (𝐸[𝑋])2

= · · · = 𝛼

𝛽2

1.6. Continuous Distributions 59

ml_notes.akkefa.com, Release 0.0.1

1.6.7 Chi-squared Distribution

One Parameter:

• degrees of freedom: 𝑛 ≥ 1 (𝑛 is an integer) 𝑋 ∼ 𝜒2(𝑛) is defined as Γ
(︀
𝑛
2 ,

1
2

)︀
mean

𝜇 = 𝐸[𝑋] = 𝑛

variance

𝜎2 = Var[𝑋] = 2𝑛

1.6.8 T-distribution

Let 𝑍 ∼ 𝑁(0, 1) and 𝑊 ∼ 𝜒2(𝑛) be independent random variables. Define

𝑇 =
𝑍√︀
𝑊/𝑛

the t-distribution Write 𝑋 ∼ 𝑡(𝑛) One Parameter: degrees of freedom: 𝑛 ≥ 1 (𝑛 is an integer) The pdf:

𝑓(𝑥) =
Γ(𝑛+1

2)
√
𝜋𝑛Γ(𝑛

2)

(︁
1 + 𝑥2

𝑛

)︁−(𝑛+1)/2

−∞ < 𝑥 <∞

1.7 Joint Distributions

1.7.1 Discrete Definition

Given two discrete random variables, X and Y , p(x, y) = P(X = x, Y = y) is the joint probability mass function for X
and Y .

Important property X and Y are independent random variables if P(X = x, Y = y) = P(X = x)P(Y = y) for all possible
values of x and y.

𝑓(𝑥, 𝑦) = 𝑃 (𝑋 = 𝑥 𝑎𝑛𝑑𝑌 = 𝑦) = 𝑃 (𝑋 = 𝑥, 𝑌 = 𝑦)

• Sum of all marginal probabilities is equal to 1. (P(y=0) + P(y=100) = P(y = 200) = 1)

• Sum of all joint probabilities is equal to 1.

Marginal Probabilities

Example

An insurance agency services customers who have both a homeowner’s policy and an automobile policy. For each type
of policy, a deductible amount must be specified. For an automobile policy, the choices are $100 or $250 and for the
homeowner’s policy, the choices are $0, $100, or $200.

Recall Two events are independent if P(A and B) = P(A)P(B) for all possible values of A and B.

60 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

P(x=100,y=100) = .1
P(x=100) p(y=200) = (.5)(.25) =.125

X and y are not independent.

1.7.2 Continuous Definition

Definition: If X and Y are continuous random variables, then f(x, y) is the joint probability density function for X and
Y if 𝑃 (𝑎 ≤ 𝑋 ≤ 𝑏, 𝑐 ≤ 𝑌 ≤ 𝑑) =

∫︀ 𝑏

𝑎

∫︀ 𝑑

𝑐
𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 for all possible a, b, c, and d Important property: X and

Y are independent random variables if $f(x, y)=f(x) f(y)$ for all possible values of x and y.

Example

Example: Suppose a room is lit with two light bulbs. Let 𝑋1 be the lifetime of the first bulb and 𝑋2 be the lifetime of
the second bulb. Suppose 𝑋1 ∼ 𝐸𝑥𝑝 (𝜆1 = 1/2000) and 𝑋2 ∼ 𝐸𝑥𝑝 (𝜆2 = 1/3000). If we assume the lifetimes of
the light bulbs are independent of each other, find the probability that the room is dark after 4000 hours.

𝐸 (𝑋1) = 1
𝜆1

= 2000hrs, 𝐸 (𝑋2) = 1
𝜆2

= 3000hrs.

Light bulbs function independently,so

𝑃 (𝑋1 ≤ 4000, 𝑋2 ≤ 4000) = 𝑃 (𝑋1 ≤ 4000)𝑃 (𝑋2 ≤ 4000)

=

(︂∫︁ 4000

0

𝜆1𝑒
−𝜆1𝑥1𝑑𝑥1

)︂(︂∫︁ 4000

0

𝜆2𝑒
−𝜆2𝑥2𝑑𝑥2

)︂
=
(︀
−𝑒−𝜆1𝑥1

)︀⃒⃒4000
0

(︀
−𝑒−𝜆2𝑥2

)︀⃒⃒⃒4000
0

=
(︁

1− 𝑒−4000/2000
)︁(︁

1− 𝑒−4000/3000
)︁

=
(︀
1− 𝑒−2

)︀ (︁
1− 𝑒−4/3

)︁
≃ .6368

1.8 Covariance and Correlation

1.8.1 Covariance

The covariance between two rv’s, X and Y, is defined as

Cov(𝑋,𝑌) = 𝐸[(𝑋 − 𝐸(𝑋))(𝑌 − 𝐸(𝑌))] = 𝐸[(𝑋 − 𝜇𝑥))(𝑌 − 𝜇𝑦)]

Cov(𝑋,𝑌) =

{︂ ∑︀
𝑥

∑︀
𝑦 (𝑥− 𝜇𝑋) (𝑦 − 𝜇𝑌)𝑃 (𝑋 = 𝑥, 𝑌 = 𝑦)∫︀∞

−∞
∫︀∞
−∞ (𝑥− 𝜇𝑋) (𝑦 − 𝜇𝑌) 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦

The covariance depends on both the set of possible pairs and the probabilities for those pairs.

Image from Wikipedia

1.8. Covariance and Correlation 61

ml_notes.akkefa.com, Release 0.0.1

• If both variables tend to deviate in the same direction (both go above their means or below their means at the
same time), then the covariance will be positive.

• If the opposite is true, the covariance will be negative.

• If X and Y are not strongly (linearly) related, the covariance will be near 0.

Computational formula for Covariance

Cov(𝑋,𝑌) = 𝐸[𝑋𝑌]− 𝐸[𝑋]𝐸[𝑌]

1.8.2 Correlation Coefficient

The correlation Coefficient of X and Y , denoted by Cor(X, Y) Represented by the Greek letter ‘’” (rho)

𝐶𝑜𝑟(𝑋,𝑌) = 𝜌𝑋,𝑌 = cov(𝑋,𝑌)
𝜎𝑋𝜎𝑌

It represents a “scaled” covariance. The correlation is always between -1 and 1.

62 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

1.8.3 Transformations of Distributions

Discrete Distributions

Suppose that (,) What is the distribution of Y = n-X?

𝑓(𝑥) = 𝑃 (𝑋 = 𝑥) =
(︀
𝑛
𝑥

)︀
𝑝𝑥(1− 𝑝)𝑛−𝑥 · 𝐼{1,2,3,...}(𝑥)

Just do it:

𝑃 (𝑌 = 𝑦) = 𝑃 (𝑛−𝑋 = 𝑦) = 𝑃 (𝑋 = 𝑛− 𝑦)

=
(︀

𝑛
𝑛−𝑦

)︀
𝑝𝑥(1− 𝑝)𝑛−(𝑛−𝑦) · 𝐼{0,1,2,3,...}(𝑛− 𝑦)

=
(︀
𝑛
𝑦

)︀
𝑝𝑛 − 𝑦(1− 𝑝)𝑦 · 𝐼{0,1,2,3,...}(𝑦) = (,)

Continuous Distributions

Invertible functions

In the most general sense, are functions that “reverse” each other. For example, if f takes a to b, then the inverse, 𝑓−1

must take b to a. a function is invertible only if each input has a unique output. That is, each output is paired with
exactly one input. That way, when the mapping is reversed, it will still be a function!

For X discrete or continuous, the cumulative distribution function (cdf) Is denoted by F(x) and is defined by

𝐹 (𝑋) = 𝑃 (𝑋 < 𝑥)

1.9 Estimators and Sampling Distributions

We have learned many different distributions for random variables and all of those distributions had parameters: the
numbers that you provide as input when you define a random variable.

What if we don’t know the values of the parameters. What if instead of knowing the random variables, we have a lot of
examples of data generated with the same underlying distribution? In this chapter we are going to learn formal ways
of estimating parameters from data.

These ideas are critical for artificial intelligence. Almost all modern machine learning algorithms work like this

1. specify a probabilistic model that has parameters.

2. Learn the value of those parameters from data.

Estimate the model parameters.

• Maximum Likelihood Estimation (MLE)

• Maximum A Posteriori (MAP).

Both of these schools of thought assume that your data are independent and identically distributed (IID) samples.

1.9. Estimators and Sampling Distributions 63

ml_notes.akkefa.com, Release 0.0.1

1.9.1 Random Sample

A collection of random variables is independent and identically distributed if each random variable has the same prob-
ability distribution as the others and all are mutually independent.

Random Sample = 𝑋1, 𝑋2, 𝑋3, ..., 𝑋𝑛

Suppose that 𝑋1, 𝑋2, 𝑋3, ..., 𝑋𝑛 is a random sample from the gamma distribution with parameters 𝑎𝑙𝑝ℎ𝑎 and 𝛽.

𝑋1, 𝑋2, . . . , 𝑋𝑛
iid∼ Γ(𝛼, 𝛽)

E.g

A good example is a succession of throws of a fair coin: The coin has no memory, so all the throws are “independent”.
And every throw is 50:50 (heads:tails), so the coin is and stays fair - the distribution from which every throw is drawn,
so to speak, is and stays the same: “identically distributed”.

Independent and identically distributed random variables (IID)

Random Sample == IID

Note: What are biased and unbiased estimators? A biased estimator is one that deviates from the true population
value. An unbiased estimator is one that does not deviate from the true population parameter.

1.9.2 Parameters

Before we dive into parameter estimation, first let’s revisit the concept of parameters. Given a model, the parameters
are the numbers that yield the actual distribution.

• In the case of a Bernoulli random variable, the single parameter was the value p.

• In the case of a Uniform random variable, the parameters are the a and b values that define the min and max
value.

we are going to use the notation 𝜃 to be a vector of all the parameters.

Distribution Parameters
Bernoulli(p) 𝜃 = 𝑝
Poisson() 𝜃 = 𝜆
Uniform(a,b) 𝜃 = (𝑎, 𝑏)
Normal 𝜃 = (𝜇, 𝜎)
𝑌 = 𝑤𝑋 + 𝑏 𝜃 = (𝑤, 𝑏)

64 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

1.9.3 Sampling Distributions

𝜃 will denote a generic parameter.

E.g

𝜃 = 𝜇, 𝜃 = 𝑝, 𝜃 = 𝜆, 𝜃 = (𝛼, 𝛽)

Estimator

𝜃 = a Random variable,

𝜃 = �̄�

Estimate

𝜃 = a observed number

𝜃 = �̄� = 42.5

• We want our estimator of to be correct “on average.

• �̄� is a random variable with its owo distribution and its own mean or expected value.

We would like sample mean [̄] = to be close to the true mean or population mean .

Important:

• If this is true, we say that¯is an unbiased estimator of 𝜇.

• In general, 𝜃 is an unbiased estimator of 𝜃. if 𝐸[𝜃] = 𝜃.

That’s is really good thing.

Mean

Let X1, X2, . . . , Xn be random sample from any distribution with mean 𝜇.

That is 𝐸[𝑋𝑖] = 𝜇 for i = 1,2,3,. . . , n. Then

𝐸[�̄�] = 𝐸

[︃
1

𝑛

𝑛∑︁
𝑖=1

𝑋𝑖

]︃
=

1

𝑛

𝑛∑︁
𝑖=1

𝐸 [𝑋𝑖]

=
1

𝑛

n∑︁
i=1

𝜇 =
1

n
(𝜇 + 𝜇 + · · ·+ 𝜇) =

1

n
n𝜇 = 𝜇

We have shown that, no matter what distribution we are working with, if the mean is 𝜇 , �̄� is an unbiased estimator for
𝜇.

Attention: We have shown that, no matter what distribution we are working with, if the mean 𝜇 is , �̄� is an
unbiased estimator for 𝜇 .

Let X1, X2, . . . , Xn be random sample from any (rate = 𝜆)

Let �̄� = 1
𝑛

∑︀𝑛
𝑖=1 𝑋𝑖 is the sample mean. We know, for the exponential distribution, that 𝐸[𝑋𝑖] = 1

𝜆 .

Then 𝐸[�̄�] = 1
𝜆

1.9. Estimators and Sampling Distributions 65

ml_notes.akkefa.com, Release 0.0.1

Variance

Let X1, X2, . . . , Xn be random sample from any distribution with mean 𝜇 and variance 𝜎2.

• We already know that �̄� is an unbiased estimator for 𝜇 .

• What can we say about the variance of �̄�?

𝑉 𝑎𝑟[�̄�] = 𝑉 𝑎𝑟
[︀
1
𝑛

∑︀𝑛
𝑖=1 𝑋𝑖

]︀
== 1

𝑛2𝑉 𝑎𝑟 [
∑︀𝑛

𝑖=1 𝑋𝑖] == 1
𝑛2

∑︀𝑛
𝑖=1 𝑉 𝑎𝑟 [𝑋𝑖]

= 1
𝑛2

∑︀𝑛
𝑖=1 𝜎

2 = 1
𝑛2𝑛𝜎

2 = 𝜎2

n

1.10 Moments Generating Functions

We are still, believe it or not, trying to estimate things from a larger population based on a sample. For example, sample
mean, or maybe the sum of the values in the sample etc. Any function of your data is known as a statistic. And we’re
going to use them to estimate other things. And in order to figure out how well we’re doing, we’re going to need to
know often the distributions of some of these statistics.

1.10.1 Distributions of sums

A lot of them depend on sums, so we’re going to start out by talking about the distribution of sums of random variables.

Suppose That,

𝑋1, 𝑋2, . . . , 𝑋𝑛
iid∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝)

What is the distribution of 𝑌 =

𝑛∑︁
𝑖=1

𝑋𝑖?

Sum of Bernoulli rv is equal to bin(n,p)

𝑌 =

𝑛∑︁
𝑖=1

𝑋𝑖 ∼ 𝑏𝑖𝑛(𝑛, 𝑝)

Each X_i take value success (P) and failure (1-P). So summing all X_i is equal to sum of all success gives the value of
Y. Which is binomial distribution.

Caution: Not all random variables are so easily interpreted by methods of Distributions of sums. So we need a
tool.

1.10.2 Moment generating functions

The moments generating functions are the functions that generate the moments of a random variable. The expected
values 𝐸(𝑋), 𝐸

(︀
𝑋2
)︀
, 𝐸
(︀
𝑋3
)︀
, . . . 𝐸 (𝑋𝑟) are called moments.

• Mean 𝜇 = 𝐸(𝑋) • Variance 𝜎2 = 𝑉 𝑎𝑟(𝑋) = 𝐸
(︀
𝑋2
)︀
− 𝜇2

which are functions of moments. moment-generating functions can sometimes make finding the mean and variance of
a random variable simpler.

Let X be a random variable. It’s moment generating function (mgf) is denoted and defined as

66 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Continuous Random Variables
𝑀𝑋(𝑡) = 𝐸

[︀
𝑒𝑡𝑋
]︀

=
∫︀∞
−∞ 𝑒𝑡𝑥𝑓𝑋(𝑥)𝑑𝑥

Discrete Random Variables
𝑀𝑋(𝑡) = 𝐸

[︀
𝑒𝑡𝑋
]︀

=
∑︀

𝑥 𝑒
𝑡𝑥𝑓𝑥(𝑥)

where 𝑓𝑋(𝑥) is the distribution of X.

Properties

• Moment generating functions also uniquely identify distributions.

1.10.3 MGT of Famous Distributions

Bernoulli(p)

𝑀𝑋(𝑡) = 𝐸
[︀
𝑒𝑡𝑋
]︀

=
∑︁
𝑥

𝑒𝑡𝑥𝑓𝑋(𝑥) =
∑︁
𝑥

𝑒𝑡𝑥𝑃 (𝑋 = 𝑥)

= 𝑒𝑡·0𝑃 (𝑋 = 0) + 𝑒𝑡·1𝑃 (𝑋 = 1)

= 1 · (1− 𝑝) + 𝑒𝑡 · 𝑝
= 1− 𝑝 + 𝑝𝑒𝑡

Binomial(n,p)

𝑋 ∼ 𝑏𝑖𝑛(𝑛, 𝑝)

𝑀𝑥(𝑡) =

𝑛∑︁
𝑥=0

𝑒𝑡𝑥
(︂
𝑛

𝑥

)︂
𝑝𝑥(1− 𝑝)𝑛−𝑥

𝑀𝑥(𝑡) =

𝑛∑︁
𝑥=0

𝑒𝑡𝑥
(︂
𝑛

𝑥

)︂
(𝑝𝑒𝑡)𝑥(1− 𝑝)𝑛−𝑥

Binomial Theorem
(𝑎 + 𝑏)𝑛 =

∑︀𝑛
𝑘=0

(︀
𝑛
𝑘

)︀
𝑎𝑘𝑏𝑛−𝑘

𝑀𝑋(𝑡) = (1− 𝑝 + 𝑝𝑒𝑡)𝑛

1.10.4 Finding Distributions

A moment-generating function uniquely determines the probability distribution of a random variable. if two random
variables have the same moment-generating function, then they must have the same probability distribution.

Important feature of MGF

Some distribution with 𝑋1, 𝑋2, . . . , 𝑋𝑛 iid and 𝑌 =
∑︀𝑛

𝑖=1 𝑋𝑖 .
𝑀𝑌 (𝑡) = [𝑀𝑋1

(𝑡)]
𝑛

1.10. Moments Generating Functions 67

ml_notes.akkefa.com, Release 0.0.1

We have just seen that the moment generating function of the sum. Is the moment generating function of one of them
raised to the nth power.

Key points

• sum of n iid Bernoulli(p) random variables is bin(n, p)

• sum of n iid exp(rate =lambda) random variables is Gamma(n, lambda)

• sum of m iid bin(n,p) is bin(nm,p)

• sum of n iid Gamma(alpha, beta) is Gamma(n alpha, beta)

• sum of n iid 𝑁
(︀
𝜇, 𝜎2

)︀
𝑖𝑠𝑁

(︀
𝑛𝜇, 𝑛𝜎2

)︀
.

• sum of n independent normal random variable with Xi ∼ N
(︀
𝜇i, 𝜎

2
i

)︀
is N

(︀∑︀n
i=1 𝜇i,

∑︀n
i=1 𝜎

2
i

)︀
1.10.5 Method of Moments Estimators(MMEs)

Method of moments means you set sample moments equal to population/theoretical moments.

It totally makes sense if you’re trying to estimate the mean or average out there in the entire population. That you
should use the sample mean or sample average of the values in the sample, but what about parameters with not such an
obvious interpretation?

Idea: Equate population and sample moments and solve for the unknown parameters.

Suppose that 𝑋1, 𝑋2, . . . , 𝑋𝑛
iid∼ Γ(𝛼, 𝛽)

How can we estimate ?
We could estimate the true mean 𝛼/𝛽 with the sample mean �̄� , but we still can’t get at if we don’t know .

Attention: Recall that the “moments” of a distribution are defined as [], [], [], . . . These are distribution or
“population” moments

• 𝜇 = 𝐸[𝑋] is a probability weighted average of the values in the population.

• �̄� is the average of the values in the sample.

It was natural for us to think about estimating mu with the average in our sample.

• E
[︀
X2
]︀

is a probability weighted average of the squares of the values in the population.

68 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

It is intuitively nice to estimate it with the average of the squared values in the sample:

1

𝑛

𝑛∑︁
𝑖=1

𝑋2
𝑖

The kth population moments:
𝜇k = E

[︀
Xk
]︀

k = 1, 2, 3, . . .

The kth population moments:
𝜇k = E

[︀
𝑋k
]︀

k = 1, 2, 3, . . .

The kth sample moments:

𝑀𝑘 =
1

𝑛

𝑛∑︁
𝑖=1

𝑋𝑘
𝑖 𝑘 = 1, 2, 3, . . .

Eg

𝑋1, 𝑋2, . . . , 𝑋𝑛
iid∼ exp(rate = 𝜆)

First population moment:

𝜇1 = 𝜇 = E[X] =
1

𝜆
First sample moment:

𝑀1 =
1

𝑛

𝑛∑︁
𝑖=1

𝑋𝑖 = �̄�

Equate:
1

𝜆
= �̄�

Solve for the unknown parameter...𝜆 =
1

�̄�

The MME is �̂� =
1

�̄�

1.11 Maximum Likelihood Estimation

1.11.1 Idea

Choose the value in the parameter space that makes the observed data “most likely”.

Suppose that we flip a biased coin which has the probability of getting “Heads” as either 0.2, 0.3, or 0.8. Suppose that
we flip the coin 20 times and see the results:
Sample Space: H, H, T, H, H, H, H, T, H, H, H, H, H, T, H, H, H, H, H , H
Which of 0.2, 0.3, or 0.8 seems “most likely”?

What if we only flip the coin twice? For i=1,2, let 𝑋𝑖 =

{︃
1 if we get "Heads" on the ith flip
0, if we get "Tails" on the ith flip

Let p=P(“Heads” on any one flip) Then X1, X2 Bernoulli(P) iid where { . , . , . }

1.11. Maximum Likelihood Estimation 69

ml_notes.akkefa.com, Release 0.0.1

Joint pmf Due to independence of the variables, we can write the joint pmf as

𝑓 (𝑥1, 𝑥2) = 𝑃 (𝑋1 = 𝑥1, 𝑋2 = 𝑥2)

= 𝑃 (𝑋1 = 𝑥1) · 𝑃 (𝑋2 = 𝑥2)

= 𝑝𝑥1(1− 𝑝)1−𝑥1I{0,1} (x1) · px2(1− 𝑝)1−x2I{0,1} (x2)

if p=0.2 and (0,0) = 0.20 × (1− 0.2)0 × 0.20 × (1− 0.2)0 = 0.64

if p=0.8 and (0,1) = 0.80 × (1− 0.8)0 × 0.81 × (1− 0.8)1 = 0.16

Tabulated values of the joint pmf

• When we observe the data to be (0,0) i.e. (“Tails”, “Tails”), the value of p that gives the highest joint probability
(0.64) is 0.2.

• When we observe the data to be (0,1) or (1,0) i.e. (“Tails”, “Heads”) or (“Heads”, “Tails”), the value of p that
gives the highest joint probability (0.21) is 0.3.

• When we observe the data to be (1,1) i.e. (“Heads”, “Heads”), the value of p that gives the highest joint probability
(0.64) is 0.8.

The maximum likelihood estimator for p is:

̂︀𝑝 =

⎧⎪⎨⎪⎩
0.2 , if (𝑥1, 𝑥2) = (0, 0)

0.3 , if (𝑥1, 𝑥2) = (0, 1) or (1, 0)

0.8 , if (𝑥1, 𝑥2) = (1, 1)

1.11.2 Introduction

Given data 𝑋1, 𝑋2...𝑋𝑛, a random sample (iid) from a distribution with unknown parameter , we want to find the value
of in the parameter space that maximizes our probability of observing that data.

For Discrete. . .

If 𝑋1, 𝑋2...𝑋𝑛 are discrete, we can look at 𝑃 (𝑋1 = 𝑥1, 𝑋2 = 𝑥2, . . . , 𝑋𝑛 = 𝑥𝑛) as a function of , and
find the that maximizes it. This is the joint pmf for 𝑋1, 𝑋2...𝑋𝑛.

For Continuous. . .

If 𝑋1, 𝑋2...𝑋𝑛 are continuous is to maximize the joint pdf with respect to .

For Discrete. . .

If 𝑋1, 𝑋2...𝑋𝑛 are discrete, we can look at 𝑃 (𝑋1 = 𝑥1, 𝑋2 = 𝑥2, . . . , 𝑋𝑛 = 𝑥𝑛) as a function of , and find the that
maximizes it. This is the joint pmf for 𝑋1, 𝑋2...𝑋𝑛.

For Continuous. . .

If 𝑋1, 𝑋2...𝑋𝑛 are continuous is to maximize the joint pdf with respect to .

The pmf/pdf for any one of is denoted by f(x). We will emphasize the dependence of f on a parameter by writing it

70 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

as

𝑓(𝑥) = 𝑓(𝑥; 𝜃)

The joint pmf/pdf for all n of them is

𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛; 𝜃) =

𝑛∏︁
𝑖=1

𝑓 (𝑥𝑖;𝜃)

𝑓(�⃗�;𝜃) =

𝑛∏︁
𝑖=1

𝑓 (𝑥𝑖;𝜃)

• The data (the x’s) are fixed.

• Think of the x’s as fixed and the joint pdf as a function of .

Given the joint PDF, the data, the Xs are fixed, and we think of it as a function of theta and we want to find the value
of theta that maximizes the joint probability density function or probability mass function.

1.11.3 Likelihood function

If we think of this as a function of theta, and the x’s as fixed, we’re going to rename the joint PDF. We’re going to call
it a likelihood function and write it as a capital L of theta L().

Attention: Because I can multiply or divide my likelihood by a constant and not change where the maximum
occurs, then we can actually define the likelihood to be anything proportional to the joint pdf. So we can throw out
multiplicative constants, including multiplicative constants that involve Xs.

1.11.4 Bernoulli distribution

𝑋1, 𝑋2, . . . , 𝑋𝑛
iid∼ Bernoulli (𝑝)

The pmf for one of them is 𝑓(𝑥; 𝑝) = 𝑝𝑥(1− 𝑝)1−𝑥𝐼{0,1}(𝑥)

The joint pmf for all of them is

𝑓(�⃗�; 𝑝) =

𝑛∏︁
𝑖=1

𝑓 (𝑥𝑖; 𝑝) =

𝑛∏︁
𝑖=1

𝑝𝑥𝑖(1− 𝑝)1−𝑥𝑖𝐼{0,1} (𝑥𝑖)

The joint probability mass function we’ll get by multiplying the individual ones together, because these guys are IID
independent and identically distributed. Now, fix the Xs. Those are stuck, fixed, not moving, and think of this as a
function of p. The values of p that are allowed, the parameter space for this model, are all values of p between 0 and 1.

For example I have p^X_1 times p^X_2 times p^X_3 and that’s going to be p to the sum of the Xs, and I’ve got 1 minus
p^1 minus X_1, 1 minus p^1 minus X_2. If I add up those exponents, I’m going to get an exponent of n minus the sum
of the Xs, and I do have a product of indicators.

= 𝑝
∑︀𝑛

𝑖=1 𝑥𝑖(1− 𝑝)𝑛−
∑︀𝑛

𝑖=1 𝑥𝑖

𝑛∏︁
𝑖=1

𝐼{0,1} (𝑥𝑖)

Drop the indicator stuff, so that is a multiplicative constant which is constant with respect to p. I think I’m going to
drop it. Why not make it simpler?

A likelihood is 𝐿(𝑝) = 𝑝
∑︀𝑛

𝑖=1 𝑥𝑖(1− 𝑝)𝑛−
∑︀𝑛

𝑖=1 𝑥𝑖

1.11. Maximum Likelihood Estimation 71

ml_notes.akkefa.com, Release 0.0.1

Log-likelihood

It is almost always easier to maximize the log-likelihood function due to properties of Logarithms.

𝑙𝑛(𝑢𝑣) = 𝑙𝑛(𝑢) + 𝑙𝑛(𝑣) and 𝑙𝑛(𝑛)𝑉 = 𝑣 × 𝑙𝑛(𝑛)

Important: The log function is an increasing function. So the log of the likelihood is going to have different values
than the likelihood, but because log is increasing, this is not going to mess up the location of the maximum.

𝐿(𝑝) = log

(︃
𝑛∏︁

𝑖=1

𝑝𝑥𝑖(1− 𝑝)1−𝑥𝑖𝐼{0,1} (𝑥𝑖)

)︃

ℓ(𝑝) =

𝑛∑︁
𝑖=1

𝑥𝑖 ln 𝑝 +

(︃
𝑛−

𝑛∑︁
𝑖=1

𝑥𝑖

)︃
ln(1− 𝑝)

I want to maximize it with respect to p, so I'm going to take a derivative with respect
to p and set it equal to 0.

𝜕

𝜕𝑝
𝑙(𝑝) =

∑︀𝑛
𝑖=1 𝑥𝑖

𝑝
−

𝑛−
∑︀𝑛

𝑖=1 𝑥𝑖

1− 𝑝

set
= 0

𝑝(1− 𝑝)

[︂∑︀𝑛
𝑖=1 𝑥𝑖

𝑝
−

𝑛−
∑︀𝑛

𝑖=1 𝑥𝑖

1− 𝑝

]︂
= 𝑝(1− 𝑝) · 0

(1− 𝑝)

𝑛∑︁
𝑖=1

𝑥𝑖 − 𝑝

(︃
𝑛−

𝑛∑︁
𝑖=1

𝑥𝑖

)︃
= 0

𝑝 =

∑︀𝑛
𝑖=1 𝑥𝑖

𝑛

This is our coin example again. But we have n flips, and we have the Bernoulli’s ones and zeros for heads and tails,
and the value of p is unknown, it’s somewhere between 0 and 1. We’re no longer restricted to 0.2, 0.3, and 0.8. The
maximum likelihood estimator, is the sample mean of the ones and zeros. If you add up the ones and zeros, and divide
by n, you’re really computing the proportion of ones in your sample. You’re really computing the proportion of times
you see heads in your sample. This maximum likelihood estimator, at least, in this case, makes a lot of sense.

𝑝 =

∑︀𝑛
𝑖=1 𝑋𝑖

𝑛
= �̄�

Q/A

Is maximum likelihood estimator Bernoulli unbiased?
the maximum likelihood estimator of is a biased estimator. Recall that if 𝑋𝑖 is a Bernoulli random variable with
parameter P, then 𝐸[𝑋𝑖] = 𝑝.

𝐸(𝑝) = 𝐸

(︃
1

𝑛

𝑛∑︁
𝑖=1

𝑋𝑖

)︃
=

1

𝑛

𝑛∑︁
𝑖=1

𝐸 (𝑋𝑖) =
1

𝑛

𝑛∑︁
𝑖=1

𝑝 =
1

𝑛
(𝑛𝑝) = 𝑝

72 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

1.11.5 Exponential distribution

𝑋1, 𝑋2, . . . , 𝑋𝑛
iid∼ Exponential (𝑟𝑎𝑡𝑒 = 𝜆)

The pmf for one of them is 𝑓(𝑥; 𝑝) = 𝜆𝑒−𝜆𝑥𝐼(0,∞)(𝑥)

The joint pmf for all of them is

𝑓(�⃗�;𝜆) =

𝑛∏︁
𝑖=1

𝑓 (𝑥𝑖;𝜆) =

𝑛∏︁
𝑖=1

𝜆𝑒−𝜆𝑥𝑖𝐼(0,∞) (𝑥𝑖)

𝑓(�⃗�; 𝑝) = 𝜆𝑛𝑒−𝜆
∑︀𝑛

𝑖=1 𝑥𝑖

𝑛∏︁
𝑖=1

𝐼(0,∞) (𝑥𝑖)

The parameter space, the Lambdas that are allowed are everything from 0 to infinity.
At this point, I can drop constants of proportionality. Again, I’m going to drop that indicator.

A likelihood is = 𝐿(𝜆) = 𝜆𝑛𝑒−𝜆
∑︀𝑛

𝑖=1 𝑥𝑖

The log-likelihood is = ℓ(𝜆) = 𝑛 ln𝜆− 𝜆

𝑛∑︁
𝑖=1

𝑥𝑖

Our goal is to maximize this as a function of Lambda.

𝜕

𝜕𝜆
ℓ(𝜆) =

𝑛

𝜆
−

𝑛∑︁
𝑖=1

𝑥𝑖
set
= 0

𝜆 =
n∑︀n
i=1 xi

I want to make everything capital, and throw a hat on it. Here is our first continuous maximum likelihood estimator for
Theta or Lambda.

The maximum likelihood estimator for 𝜆 is

�̂� =
𝑛∑︀𝑛

𝑖=1 𝑋𝑖
=

1

�̄�

Warning: Same as method of moments. Biased!

This is exactly what we got with method of moments. Because if Lambda is the rate of this distribution, the true
distribution mean is 1 over Lambda. If you equate that to the sample mean x bar and solve for Lambda, in the method
of moments case, we got 1 over x bar. We weren’t that happy about it because it was a biased estimator. I’m trying to
convince you that MLEs are everything. But they’re not unbiased.

1.11.6 Normal distribution

MLEs for Multiple and Support Parameters

We’re going to to consider two cases

• One is when theta is higher dimensional, so theta might be the vector of mu and sigma squared.

• Other cases when the parameter is in the indicator.

1.11. Maximum Likelihood Estimation 73

ml_notes.akkefa.com, Release 0.0.1

𝑋1, 𝑋2, . . . , 𝑋𝑛
iid∼ 𝑁(𝜇, 𝜎2)

The pdf for one of them is f
(︀
x;𝜇, 𝜎2

)︀
= 1√

2𝜋𝜎2
e−

1
2𝜎2 (x−𝜇)2

The joint pdf for all of them is

𝑓(�⃗�;𝜇, 𝜎2) =

𝑛∏︁
𝑖=1

𝑓
(︀
𝑥𝑖;𝜇, 𝜎

2
)︀

=
(︀
2𝜋𝜎2

)︀−n/2
e−

1
2𝜎2

∑︀n
i=1(xi−𝜇)2

The parameter space : −∞ < 𝜇 <∞, 𝜎2 > 0

A likelihood is L
(︀
𝜇, 𝜎2

)︀
=
(︀
2𝜋𝜎2

)︀−n/2
e−

1
2𝜎2

∑︀n
i=1(xi−𝜇)2

The log-likelihood is ℓ
(︀
𝜇, 𝜎2

)︀
= −n

2
ln
(︀
2𝜋𝜎2

)︀
− 1

2𝜎2

𝑛∑︁
𝑖=1

(xi − 𝜇)
2

ℓ
(︀
𝜇, 𝜎2

)︀
= −n

2
ln
(︀
2𝜋𝜎2

)︀
− 1

2𝜎2

n∑︁
i=1

(xi − 𝜇)
2

𝜕

𝜕𝜇
ℓ
(︀
𝜇, 𝜎2

)︀ set
= 0

𝜕

𝜕𝜎2
ℓ
(︀
𝜇, 𝜎2

)︀ set
= 0

Solve for and simultaneously

1.11.7 The Invariance Property

1.11.8 Evaluation

Comparing the quality of different estimators

Variance, MSE, and Bias

Mean Squared Error

Let 𝜃 be an estimator of a parameter 𝜃. The mean squared error of 𝜃 is denoted and defined by

𝑀𝑆𝐸(𝜃) = 𝐸[(𝜃 − 𝜃)2]

Note: If 𝜃 is an unbiased estimator of 𝜃, its mean squared error is simply the variance of 𝜃

Bias

The bias of 𝜃 is denoted and defined by

𝐵(𝜃) = 𝐸[𝜃]− 𝜃

74 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

An unbiased estimator has a bias of zero.

𝑀𝑆𝐸(̂︀𝜃) = 𝐸
[︁
(̂︀𝜃 − 𝜃)2

]︁
= 𝐸

[︁
(̂︀𝜃 − 𝐸[𝜃] + 𝐸[𝜃]− 𝜃)2

]︁
= 𝐸

[︁
((𝜃 − 𝐸[𝜃]) + 𝐵[𝜃])2

]︁

𝑀𝑆𝐸(𝜃) = 𝑉 𝑎𝑟[𝜃] + (𝐵[𝜃])2

Practise

Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be a random sample from the Poisson distribution with parameter 𝜆 > 0. Let 𝜃 be
the MLE for 𝜆. What is the mean-squared error of ̂︀𝜆 as an estimator of 𝜆 ?

𝑥 ∼ poisson (𝜆) and MLE of 𝜆 = �̄�

Proof

𝐸(�̄�) = 𝐸[

𝑛∑︁
𝑖=1

𝑋𝑖] =
1

𝑛
𝐸

[︃
𝑛∑︁

𝑛=1

𝑥𝑖

]︃
𝐸(�̄�) =

𝑛

𝑛
𝐸 [𝑋𝑖] = 𝜆

𝑀𝑆𝐸(�̂�) = 𝑉 𝑎𝑟(�̂�) + (𝐵𝑖𝑎𝑠(𝜆))2

= 𝑉 𝑎𝑟(�̂�) + 0

= 𝑉 𝑎𝑟(
1

𝑛

𝑛∑︁
𝑖=1

𝑥𝑖)

=
𝑛

𝑛2
× 𝜆 =

𝜆

𝑛

1.11.9 MLE Properties

1.12 Confidence Interval

A 95% confidence for the mean is given by (-2.14,3.07).

There’s no probability, where does the probability come in?

it comes in from random sampling. The fact that if you select a random sample and compute your estimator and if you
got to do it again or if someone else did it, they’re going to get a different estimator based on the randomness of the
sample.

• Collect your sample.

• Estimate the parameter.

• Return a confidence interval.

If you did this again, you would not get the same results! Different samples and different confidence intervals.

Multiple samples give multiple confidence intervals. 95% of them will correctly capture and 5% miss
it.

1.12. Confidence Interval 75

ml_notes.akkefa.com, Release 0.0.1

1.13 Hypothesis Testing

Statistical inference is the process of learning about characteristics of a population based on what is observed in a
relatively small sample from that population. A sample will never give us the entire picture though, and we are bound
to make incorrect decisions from time to time.

We will learn how to derive and interpret appropriate tests to manage this error and how to evaluate when one test is
better than another. we will learn how to construct and perform principled hypothesis tests for a wide range of problems
and applications when they are not.

1.13.1 What is Hypothesis

• Hypothesis testing is an act in statistics whereby an analyst tests an assumption regarding a population parameter.

• Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is most
often used by scientists to test specific predictions, called hypotheses, that arise from theories.

Note: Due to random samples and randomness in the problem, we can different errors in our hypothesis testing. These
errors are called Type I and Type II errors.

1.13.2 Type of hypothesis testing

Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be a random sample from the normal distribution with mean 𝜇 and variance 𝜎2

import torch
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import norm

sns.set_theme(style="darkgrid")
sample = torch.normal(mean = 0, std = 1, size=(1,1000))

sns.displot(sample[0], kde=True, stat = 'density',)
plt.axvline(torch.mean(sample[0]), color='red', label='mean')
plt.show()

76 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Example of random sample after it is observed:

2.73, 1.14, 3.98, 2.15, 5, 85, 1.97, 2.54, 2.03

Based on what you are seeing, do you believe that the true population mean 𝜇 is

𝜇 <= 3 or 𝜇 > 3

The sample mean is x = 2.799

This is below 3 , but can we say that 𝜇 < 3 ?

This seems awfully dependent on the random sample we happened to get! Let’s try to work with the most generic
random sample of size 8:

𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8

Let X1,X2, . . . ,Xn be a random sample of size n from the N
(︀
𝜇, 𝜎2

)︀
distribution.

X1,X2, . . . ,Xn
iid∼ N

(︀
𝜇, 𝜎2

)︀
The Sample mean is

�̄� =
1

𝑛

𝑛∑︁
𝑖=11

𝑋𝑖

• We’re going to tend to think that 𝜇 < 3 when �̄� is “significantly” smaller than 3.

1.13. Hypothesis Testing 77

ml_notes.akkefa.com, Release 0.0.1

• We’re going to tend to think that 𝜇 > 3 when �̄� is “significantly” larger than 3.

• We’re never going to observe �̄� = 3, but we may be able to be convinced that 𝜇 = 3 if �̄� is not too far away.

How do we formalize this stuff, We use hypothesis testing

Notation

H0 : 𝜇 ≤ 3 <- Null hypothesis
H1 : 𝜇 > 3 Alternate hypothesis

Null hypothesis

The null hypothesis is a hypothesis that is assumed to be true. We denote it with an 𝐻0.

Alternate hypothesis

The alternate hypothesis is what we are out to show. The alternative hypothesis is a hypothesis that we are looking for
evidence for or out to show. We denote it with an 𝐻1.

Note: Some people use the notation 𝐻𝑎 here

Conclusion is either:
Reject H0 OR Fail to Reject H0

simple hypothesis

A simple hypothesis is one that completely specifies the distribution. Do you know the exact distribution.

composite hypothesis

You don’t know the exact distribution.
Means you know the distribution is normal but you don’t know the mean and variance.

Critical values

Critical values for distributions are numbers that cut off specified areas under pdfs. For the N(0, 1) distribution, we will
use the notation 𝑧𝛼 to denote the value that cuts off area 𝛼 to the right as depicted here.

78 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

1.13. Hypothesis Testing 79

ml_notes.akkefa.com, Release 0.0.1

1.13.3 Errors in Hypothesis Testing

Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be a random sample from the normal distribution with mean 𝜇 and variance 𝜎2 = 2

𝐻0 : 𝜇 ≤ 3 𝐻1 : 𝜇 > 3

Idea: Look at �̄� and reject 𝐻0 in favor of 𝐻1 if 𝑋 is “large”.
i.e. Look at �̄� and reject 𝐻0 in favor of 𝐻1 if 𝑋 > 𝑐 for some value 𝑐.

80 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

You are a potato chip manufacturer and you want to ensure that the mean amount in 15 ounce bags is at least 15 ounces.
H0 : 𝜇 ≤ 15 H1 : 𝜇 > 15

Type I Error

The true mean is≤ 15 but you concluded i was > 15. You are going to save some money because you won’t be adding
chips but you are risking a lawsuit!

Type II Error

The true mean is > 15 but you concluded it was ≤ 15 . You are going to be spending money increasing the amount of
chips when you didn’t have to.

1.13.4 Developing a Test

Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be a random sample from the normal distribution with mean 𝜇 and known variance 𝜎2.

Consider testing the simple versus simple hypotheses

𝐻0 : 𝜇 = 5

𝐻1 : 𝜇 = 3

1.13. Hypothesis Testing 81

ml_notes.akkefa.com, Release 0.0.1

level of significance

Let 𝛼 = 𝑃 (Type I Error)
= 𝑃 (Reject 𝐻0 when it’s true)
= 𝑃 (Reject 𝐻0 when 𝜇 = 5)

𝛼 is called the level of significance of the test. It is also sometimes referred to as the size of the test.

𝛼 = max𝑃 (Type I Error)

= max
𝜇∈𝐻0

𝑃 (Reject 𝐻0;𝜇)

𝛽 = max𝑃 (Type II Error)

= max
𝜇∈𝐻1

𝑃 (Fail to Reject 𝐻0;𝜇)

Power of the test

1− 𝛽 is known as the power of the test

1− 𝛽 = 1− max
𝜇∈𝐻1

𝑃 (Fail to Reject 𝐻0;𝜇)

= min
𝜇∈𝐻1

(1− 𝑃 (Fail to Reject 𝐻0;𝜇))

= min
𝜇∈𝐻1

𝑃 (Reject 𝐻0;𝜇)
High power

is good!

Step One

Choose an estimator for .

̂︀𝜇 = �̄�

Step Two

Choose a test statistic or Give the “form” of the test.

• We are looking for evidence that 𝐻1 is true.

• The 𝑁
(︀
3, 𝜎2

)︀
distribution takes on values from −∞ to∞.

• 𝑋 ∼ 𝑁
(︀
𝜇, 𝜎2/𝑛

)︀
⇒ 𝑋 also takes on values from −∞ to∞.

• It is entirely possible that �̄� is very large even if the mean of its distribution is 3.

• However, if �̄� is very large, it will start to seem more likely that 𝜇 is larger than 3.

• Eventually, a population mean of 5 will seem more likely than a population mean of 3.

Reject 𝐻0, in favor of 𝐻1, if 𝑋 < 𝑐 for some c to be determined.

82 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Step Three

Find c.

• If 𝑐 is too large, we are making it difficult to reject 𝐻0. We are more likely to fail to reject when it should be
rejected.

• If 𝑐 is too small, we are making it to easy to reject 𝐻0. We are more likely reject when it should not be rejected.

This is where 𝛼 comes in.

𝛼 = 𝑃 (𝑇𝑦𝑝𝑒𝐼𝐸𝑟𝑟𝑜𝑟)

= 𝑃 (Reject 𝐻0 when true)

= 𝑃 (𝑋 < 𝑐 when 𝜇 = 3)

Step Four

Give a conclusion!

0.05 = 𝑃 (Type I Error)
= 𝑃 (Reject 𝐻0 when true)
= 𝑃 (𝑋 < c when 𝜇 = 5)

= 𝑃
(︁

𝑋−𝜇0

𝜎/
√
𝑛
< 𝑐−5

2/
√
10

when 𝜇 = 5)

1.13. Hypothesis Testing 83

ml_notes.akkefa.com, Release 0.0.1

84 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Formula

Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be a random sample from the normal distribution with mean 𝜇 and known variance 𝜎2.

Consider testing the simple versus simple hypotheses

𝐻0 : 𝜇 = 𝜇0 𝐻1 : 𝜇 = 𝜇1

where 𝜇0 and 𝜇1 are fixed and known.

𝐻0 : 𝜇 = 𝜇0

𝐻1 : 𝜇 = 𝜇1

𝜇0 < 𝜇1

Reject H0, in favor of H1 if

𝑋 > 𝜇0 + 𝑧𝛼
𝜎√
𝑛

𝐻0 : 𝜇 = 𝜇0

𝐻1 : 𝜇 = 𝜇1

𝜇0 > 𝜇1

Reject H0, in favor of H1 if

𝑋 < 𝜇0 + 𝑧1−𝛼
𝜎√
𝑛

Type II Error

𝐻0 : 𝜇 = 𝜇0

𝐻1 : 𝜇 = 𝜇1

𝜇0 < 𝜇1

𝛽 = 𝑃 (Type II Error)

=𝑃 (Fail to Reject 𝐻0 when false)

=𝑃

(︂
𝑋 ≤ 𝜇0 + 𝑧𝛼

𝜎√
𝑛

when 𝜇 = 𝜇1

)︂
=𝑃

(︂
𝑋 ≤ 𝜇0 + 𝑧𝛼

𝜎√
𝑛

;𝜇1

)︂

𝛽 = 𝑃

(︃(︂
𝑋 − 𝜇1

𝜎/
√
𝑛

)︂
≤

𝜇0 + 𝑧𝛼
𝜎√
𝑛
− 𝜇1

𝜎/
√
𝑛

;𝜇1

)︃

= 𝑃

(︃
𝑍 ≤

𝜇0 + 𝑧𝛼
𝜎√
𝑛
− 𝜇1

𝜎/
√
𝑛

)︃

1.13. Hypothesis Testing 85

ml_notes.akkefa.com, Release 0.0.1

1.13.5 Composite vs Composite Hypothesis

𝑋1, 𝑋2, . . . , 𝑋𝑛 ∼ 𝑁
(︀
𝜇, 𝜎2

)︀
, 𝜎2 known

𝐻0 : 𝜇 ≤ 𝜇0 vs 𝐻1 : 𝜇 > 𝜇0

• Step One Choose an estimator for

• Step Two Choose a test statistic: Reject 𝐻0 , in favor of 𝐻1 if¯> c, where c is to be determined.

• Step Three Find c.

1.13.6 One-Tailed Tests

Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be a random sample from the normal distribution with mean 𝜇 and known variance 𝜎2. Consider
testing the hypotheses

𝐻0 : 𝜇 ≥ 𝜇0 𝐻1 : 𝜇 < 𝜇0

where 𝜇0 is fixed and known.

Step One

Choose an estimator for . ̂︀𝜇 = �̄�

Step Two

Choose a test statistic or Give the “form” of the test.

Reject 𝐻0, in favor of 𝐻1, if 𝑋 < 𝑐 for some c to be determined.

Step Three

Find c.
𝛼 = max

𝜇≥𝜇0

𝑃 (Type I Error)

= max
𝜇≥𝜇0

𝑃 (Reject 𝐻0;𝜇)

= max
𝜇≥𝜇0

𝑃 (𝑋 < 𝑐;𝜇)

𝛼 = max
𝜇≥𝜇0

𝑃 (𝑋 < 𝑐;𝜇)

= max
𝜇≥𝜇0

𝑃

(︂
𝑍 <

𝑐− 𝜇

𝜎/
√
𝑛

)︂
= max

𝜇≥𝜇0

Φ

(︂
𝑐− 𝜇

𝜎/
√
𝑛

)︂
𝛼 = max

𝜇≥𝜇0

𝑃 (𝑋 < 𝑐;𝜇)

= max
𝜇≥𝜇0

𝑃

(︂
𝑍 <

𝑐− 𝜇

𝜎/
√
𝑛

)︂
= max

𝜇≥𝜇0

Φ

(︂
𝑐− 𝜇

𝜎/
√
𝑛

)︂
decreasing in 𝜇

86 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Step four

Reject 𝐻0, in favor of 𝐻1, if $𝑋 < 𝜇0 + 𝑧1−𝛼
𝜎√
𝑛

$

Example

In 2019, the average health care annual premium for a family of 4 in the United States, was reported to be $6, 015.

In a more recent survey, 100 randomly sampled families of 4 reported an average annual health care premium of $6, 537.
Can we say that the true average is currently greater than $6, 015 for all families of 4?

Assume that annual health care premiums are normally distributed with a standard deviation of $814. Let 𝜇 be the true
average for all families of 4.

Step Zero

Set up the hypotheses.

𝐻0 : 𝜇 = 6015 𝐻1 : 𝜇 > 6015

Decide on a level of significance. 𝛼 = 0.10

Step One

Choose an estimator for 𝜇.

�̂� = �̄�

Step Two

Give the form of the test. Reject 𝐻0, in favor of 𝐻1, if

�̄� > 𝑐

for some 𝑐 to be determined.

Step Three

Find c.
𝛼 = max

𝜇=𝜇0

𝑃 (Type I Error; 𝜇)

= 𝑃 (Type I Error; 𝜇0)

𝛼 = 𝑃 (Reject 𝐻0;𝜇0) when
= 𝑃

(︀
𝑋 > 𝑐;𝜇0

)︀
it true!,

= 𝑃

(︂
𝑋 − 𝜇0

𝜎/
√
𝑛

>
𝑐− 6015

814/
√

100
;𝜇0

)︂
= 𝑃

(︂
𝑍 >

𝑐− 6015

814/
√

100

)︂
𝑐− 6015

814/
√

100
= 1.28

1.13. Hypothesis Testing 87

ml_notes.akkefa.com, Release 0.0.1

Step Four

Conclusion. Reject 𝐻0, in favor of 𝐻1, if

�̄� > 6119.19

From the data, where �̄� = 6537, we reject 𝐻0 in favor of 𝐻1.
The data suggests that the true mean annual health care premium is greater than $6015.

1.13.7 Hypothesis Testing with P-Values

Recall that p-values are defined as the following: A p-value is the probability that we observe a test statistic at least as
extreme as the one we calculated, assuming the null hypothesis is true. It isn’t immediately obvious what that definition
means, so let’s look at some examples to really get an idea of what p-values are, and how they work.

Let’s start very simple and say we have 5 data points: x = <1, 2, 3, 4, 5>. Let’s also assume the data were generated
from some normal distribution with a known variance 𝜎 but an unknown mean 𝜇0. What would be a good guess for
the true mean? We know that this data could come from any normal distribution, so let’s make two wild guesses:

1. The true mean is 100.

2. The true mean is 3.

Intuitively, we know that 3 is the better guess. But how do we actually determine which of these guesses is more likely?
By looking at the data and asking “how likely was the data to occur, assuming the guess is true?”

1. What is the probability that we observed x=<1,2,3,4,5> assuming the mean is 100? Probabiliy pretty low. And
because the p-value is low, we “reject the null hypothesis” that 𝜇0 = 100.

2. What is the probability that we observed x=<1,2,3,4,5> assuming the mean is 3? Seems reasonable. However,
something to be careful of is that p-values do not prove anything. Just because it is probable for the true mean to
be 3, does not mean we know the true mean is 3. If we have a high p-value, we “fail to reject the null hypothesis”
that 𝜇0 = 3.

What do “low” and “high” mean? That is where your significance level 𝛼 comes back into play. We consider a p-value
low if the p-value is less than 𝛼, and high if it is greater than 𝛼.

88 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Example

From the above example.

1.13. Hypothesis Testing 89

ml_notes.akkefa.com, Release 0.0.1

• This is the 𝑁
(︀
6015, 8142/100

)︀
pdf.

• The red area is 𝑃 (𝑋 > 6537).

𝑃 (𝑋 > 6537)

= 𝑃

(︂
𝑋 − 𝜇0

𝜎/
√
𝑛

>
6537− 6015

814/
√

100

)︂
= 𝑃 (𝑍 > 6.4127)

≈ 0.00000001
Super small
and way out
"in the tail".

• The P-Value is the area to the right (in this case) of the test statistic �̄� .

• The P-value being less than 0.10 puts �̄� in the rejection region.

• The P-value is also less than 0.05 and 0.01.

• It looks like we will reject 𝐻0 for the most typical values of 𝛼.

90 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

1.13.8 Power Functions

Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be a random sample from any distribution with unknown parameter 𝜃 which takes values in a
parameter space Θ

We ultimately want to test

𝐻0 : 𝜃 ∈ Θ0

𝐻1 : 𝜃 ∈ Θ∖Θ0

where Θ0 is some subset of Θ.

So in other words, if the null hypothesis was for you to test for an exponential distribution, whether lambda was between
0 and 2, the complement of that is not the rest of the real number line because the space is only non-negative values.
So the complement of the interval from 0 to 2 in that space is 2 to infinity.

𝛾(𝜃) = 𝑃 (Reject 𝐻0 when the parameter is 𝜃)

𝛾(𝜃) = 𝑃 (Reject 𝐻0; 𝜃)

𝜃 is an argument that can be anywhere in the parameter space Θ. it could be a 𝜃 from 𝐻0 it could be a 𝜃 from 𝐻1

𝛼 = max𝑃 (Reject 𝐻0 when true)

= max
𝜃∈Θ0

𝑃 (Reject 𝐻0; 𝜃)

= max
𝜃∈Θ0

𝛾(𝜃)←→ Other notation
is max𝜃∈𝐻0

1.13.9 Two Tailed Tests

Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be a random sample from the normal distribution with mean 𝜇 and known variance 𝜎2.

Derive a hypothesis test of size 𝛼 for testing

𝐻0 : 𝜇 = 𝜇0

𝐻1 : 𝜇 ̸= 𝜇0

We will look at the sample mean �̄� and reject if it is either too high or too low.

Step One

Choose an estimator for .

̂︀𝜇 = �̄�

Step Two

Choose a test statistic or Give the “form” of the test.

Reject 𝐻0, in favor of 𝐻1 if either 𝑋 < 𝑐 or �̄� > 𝑑 for some 𝑐 and 𝑑 to be determined.

Easier to make it symmetric! Reject 𝐻0, in favor of 𝐻1 if either

𝑋 > 𝜇0 + 𝑐

𝑋 < 𝜇0 − 𝑐

for some 𝑐 to be determined.

1.13. Hypothesis Testing 91

ml_notes.akkefa.com, Release 0.0.1

Step Three

Find c.

𝛼 = max
𝜇=𝜇0

𝑃 (Type I Error)

= max
𝜇=𝜇0

𝑃 (Reject 𝐻0;𝜇)

= 𝑃 (Reject 𝐻0;𝜇0)

𝛼 = 𝑃
(︀
𝑋 < 𝜇0 − 𝑐 or 𝑋 > 𝜇0 + 𝑐;𝜇0

)︀
= 1− 𝑃

(︀
𝜇0 − 𝑐 ≤ 𝑋 ≤ 𝜇0 + 𝑐;𝜇0

)︀
𝛼 = 1− 𝑃

(︂
−𝑐

𝜎/
√
𝑛
≤ 𝑍 ≤ 𝑐

𝜎/
√
𝑛

)︂
1− 𝛼 = 𝑃

(︂
−𝑐

𝜎/
√
𝑛
≤ 𝑍 ≤ 𝑐

𝜎/
√
𝑛

)︂
𝑐

𝜎/
√
𝑛

= 𝑧𝛼/2

𝑐 = 𝑧𝛼/2
𝜎√
𝑛

92 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Step Four

Conclusion

Reject 𝐻0, in favor of 𝐻1, if

𝑋 > 𝜇0 + 𝑧𝛼/2
𝜎√
𝑛

𝑋 < 𝜇0 − 𝑧𝛼/2
𝜎√
𝑛

Example

In 2019, the average health care annual premium for a family of 4 in the United States, was reported to be $6, 015.

In a more recent survey, 100 randomly sampled families of 4 reported an average annual health care premium of
$6, 177. Can we say that the true average, for all families of 4 , is currently different than the sample mean from 2019?
$𝜎 = 814 Use 𝛼 = 0.05$

Assume that annual health care premiums are normally distributed with a standard deviation of $814. Let 𝜇 be the true
average for all families of 4. Hypotheses:

𝐻0 : 𝜇 = 6015

𝐻1 : 𝜇 ̸= 6015

�̄� = 6177 𝜎 = 814 𝑛 = 100

𝑧𝛼/2 = 𝑧0.025 = 1.96

In R: qnorm(0.975)

6015 + 1.96
814√
100

= 6174.5

6015− 1.96
814√
100

= 5855.5

We reject 𝐻0, in favor of 𝐻1. The data suggests that the true current average, for all families of 4 , is different than it
was in 2019.

1.13. Hypothesis Testing 93

ml_notes.akkefa.com, Release 0.0.1

1.13.10 Hypothesis Tests for Proportions

A random sample of 500 people in a certain country which is about to have a national election were asked whether they
preferred “Candidate A” or “Candidate B”. From this sample, 320 people responded that they preferred Candidate A.

Let 𝑝 be the true proportion of the people in the country who prefer Candidate A.

Test the hypotheses 𝐻0 : 𝑝 ≤ 0.65 versus 𝐻1 : 𝑝 > 0.65 Use level of significance 0.10. We have an estimate

𝑝 =
320

500
=

16

25

The Model

Take a random sample of size 𝑛. Record 𝑋1, 𝑋2, . . . , 𝑋𝑛 where 𝑋𝑖 =

{︃
1 person i likes Candidate A
0 person i likes Candidate B

Then

𝑋1, 𝑋2, . . . , 𝑋𝑛 is a random sample from the Bernoulli distribution with parameter 𝑝.

Note that, with these 1’s and 0’s, $
𝑝 =

in the sample who like A
in the sample

=

∑︀𝑛
𝑖=1 𝑋𝑖

𝑛
= 𝑋

𝐵𝑦𝑡ℎ𝑒𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝐿𝑖𝑚𝑖𝑡𝑇ℎ𝑒𝑜𝑟𝑒𝑚,\hat{p}=\overline{

X }$ has, for large samples, an approximately normal distribution.

𝐸[𝑝] = 𝐸 [𝑋1] = 𝑝

Var[𝑝] =
Var [𝑋1]

𝑛
=

𝑝(1− 𝑝)

𝑛

94 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

So, 𝑝
approx∼ 𝑁

(︁
𝑝, 𝑝(1−𝑝)

𝑛

)︁
𝑝

approx∼ 𝑁

(︂
𝑝,

𝑝(1− 𝑝)

𝑛

)︂
In particular, $ 𝑝−𝑝√︁

𝑝(1−𝑝)
𝑛

𝑏𝑒ℎ𝑎𝑣𝑒𝑠𝑟𝑜𝑢𝑔ℎ𝑙𝑦𝑙𝑖𝑘𝑒𝑎N(0,1)𝑎𝑠n$ gets large.

𝑛 > 30 is a rule of thumb to apply to all distributions, but we can (and should!) do better with specific distributions.

• 𝑝 lives between 0 and 1.

• The normal distribution lives between −∞ and∞.

• However, 99.7% of the area under a 𝑁(0, 1) curve lies between −3 and 3 ,

𝑝
approx∼ 𝑁

(︂
𝑝,

𝑝(1− 𝑝)

𝑛

)︂
⇒ 𝜎𝑝 =

√︂
𝑝(1− 𝑝)

𝑛

Go forward using normality if the interval $
(︂
𝑝− 3

√︁
𝑝(1−𝑝)

𝑛 , 𝑝 + 3
√︁

𝑝(1−𝑝)
𝑛

)︂
𝑖𝑠𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑙𝑦𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑𝑤𝑖𝑡ℎ𝑖𝑛[0,1]$.

Step One

Choose a statistic. ̂︀𝑝 = sample proportion for Candidate 𝐴

Step Two

Form of the test. Reject 𝐻0, in favor of 𝐻1, if 𝑝 > 𝑐.

Step Three

Use 𝛼 to find 𝑐 Assume normality of 𝑝 ? It is a sample mean and 𝑛 > 30.

• The interval $
(︂
𝑝− 3

√︁
𝑝(1−𝑝)

𝑛 , 𝑝 + 3
√︁

𝑝(1−𝑝)
𝑛

)︂
𝑖𝑠(0.5756,0.7044)$

𝛼 = max
𝑝∈𝐻0

𝑃 (Type I Error)

= max
𝑝≤0.65

𝑃 (Reject 𝐻0; 𝑝)

= max
𝑝≤0.65

𝑃 (𝑝 > 𝑐; 𝑝)

𝛼 = max
𝑝≤0.65

𝑃

⎛⎝ 𝑝− 𝑝√︁
𝑝(1−𝑝)

𝑛

>
𝑐− 𝑝√︁
𝑝(1−𝑝)

𝑛

; 𝑝

⎞⎠
≈ max

𝑝≤0.65
𝑃

⎛⎝𝑍 >
𝑐− 𝑝√︁
𝑝(1−𝑝)

𝑛

⎞⎠

1.13. Hypothesis Testing 95

ml_notes.akkefa.com, Release 0.0.1

0.10 = max
𝑝≤0.65

𝑃

⎛⎝𝑍 >
𝑐− 𝑝√︁
𝑝(1−𝑝)

𝑛

⎞⎠
= 𝑃

⎛⎝𝑍 >
𝑐− 0.65√︁
0.65(1−0.65)

𝑛

⎞⎠
⇒ 𝑐− 0.65√︁

0.65(1−0.65)
𝑛

= 𝑧0.10

Reject 𝐻0 if

𝑝 > 0.65 + 𝑧0.10

√︂
0.65(1− 0.65)

𝑛

Formula

𝑝 > 𝑝 + 𝑧0.10

√︂
𝑝(1− 𝑝)

𝑛

1.13.11 T-Tests

What is a t-test, and when do we use it? A t-test is used to compare the means of one or two samples, when the
underlying population parameters of those samples (mean and standard deviation) are unknown. Like a z-test, the t-test
assumes that the sample follows a normal distribution. In particular, this test is useful for when we have a small sample
size, as we can not use the Central Limit Theorem to use a z-test.

There are two kinds of t-tests:

1. One Sample t-tests

2. Two Sample t-tests

Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be a random sample from the normal distribution with mean 𝜇 and unknown variance 𝜎2.

Consider testing the simple versus simple hypotheses $𝐻0 : 𝜇 = 𝜇0 𝐻1 : 𝜇 < 𝜇0𝑤ℎ𝑒𝑟𝑒\mu_0$ is fixed and known.

Reject 𝐻0, in favor of 𝐻1, if

𝑋 < 𝜇0 + 𝑧1−𝛼
𝜎√
𝑛

unknown!This is a useless test!

It was based on the fact that

𝑋 ∼ 𝑁
(︀
𝜇, 𝜎2/𝑛

)︀

𝑋 − 𝜇

𝜎/
√
𝑛
∼ 𝑁(0, 1)

What is we use the sample standard deviation 𝑆 =
√
𝑆2 in place of 𝜎 ?

𝑋 − 𝜇

𝑆/
√
𝑛

=
𝑋 − 𝜇

𝜎/
√
𝑛
· 𝜎
𝑆

=

𝑋−𝜇
𝜎/

√
𝑛

𝑆
𝜎

=
𝑋 − 𝜇

𝜎/
√
𝑛
/

√︂
𝑆2

𝜎2

96 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

𝑋 − 𝜇

𝑆/
√
𝑛

=
𝑋 − 𝜇

𝜎/
√
𝑛
/

√︂
𝑆2

𝜎2

=

(︂
𝑋 − 𝜇

𝜎/
√
𝑛

)︂
/

⎯⎸⎸⎷(︁ (𝑛−1)𝑆2

𝜎2

𝑛− 1
𝜒2(𝑛− 1)

𝑁(0, 1)

𝑋 − 𝜇

𝑆/
√
𝑛

=
𝑋 − 𝜇

𝜎/
√
𝑛
/

√︂
𝑆2

𝜎2

=

(︂
𝑋 − 𝜇

𝜎/
√
𝑛

)︂
/

⎯⎸⎸⎷(︁ (𝑛−1)𝑆2

𝜎2

𝑛− 1
𝜒2(𝑛− 1)

𝑁(0, 1)

Thus,

�̄� − 𝜇

𝑆/
√
𝑛
∼ 𝑡(𝑛− 1)

Step four

Conclusion! Reject 𝐻0, in favor of 𝐻1, if

𝑋 < 𝜇0 + 𝑡1−𝛼,𝑛−1
𝑆√
𝑛

Example

In 2019, the average health care annual premium for a family of 4 in the United States, was reported to be $6, 015.

In a more recent survey, 15 randomly sampled families of 4 reported an average annual health care premium of $6, 033
and a sample variance of $825.

Can we say that the true average is currently greater than $6, 015 for all families of 4 ?

Use 𝛼 = 0.10

Assume that annual health care premiums are normally distributed. Let 𝜇 be the true average for all families of 4.

Step Zero

Set up the hypotheses.

𝐻0 : 𝜇 = 6015 𝐻1 : 𝜇 > 6015

1.13. Hypothesis Testing 97

ml_notes.akkefa.com, Release 0.0.1

Step One

Choose a test statistic

�̄�

Step Two

Give the form of the test. Reject 0 , in favor of h1, if > where c is to be determined.

Step Three

Find c

𝛼 = max
𝜇=𝜇0

𝑃 (Type I Error)

= max
𝜇=6015

𝑃 (Reject 𝐻0;𝜇)

= 𝑃 (Reject 𝐻0;𝜇 = 6015)

= 𝑃 (𝑋 > 𝑐;𝜇 = 6015)

𝛼 = 𝑃 (𝑋 > 𝑐;𝜇 = 6015)

= 𝑃

(︂
𝑋 − 𝜇0

𝑆/
√
𝑛

>
𝑐− 6015√
825/
√

15
;𝜇 = 6015

)︂
= 𝑃

(︂
𝑇 >

𝑐− 6015√
825/
√

15

)︂

98 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

⇒ 𝑐− 6015√
825/
√

15
= 1.345

⇒ 𝑐 = 6024.98

Step Four

Conclusion. Rejection Rule: Reject 𝐻0, in favor of 𝐻1 if

�̄� > 6024.98

We had �̄� = 6033 so we reject 𝐻0.

There is sufficient evidence (at level 0.10) in the data to suggest that the true mean annual healthcare premium cost for
a family of 4 is greater than $6, 015.

P value

P-Value = 𝑃 (𝑋 > 6033;𝜇 = 6015)

= 𝑃

(︂
𝑋 − 𝜇

𝑆/
√
𝑛

>
6033− 6015√

825/
√

15
;𝜇 = 6015

)︂
= 𝑃 (𝑇 > 2.43) ≈ 0.015

where 𝑇 ∼ 𝑡(14)

(In R : 1− 𝑝𝑡(2.43, 14)

1.13. Hypothesis Testing 99

ml_notes.akkefa.com, Release 0.0.1

1.13.12 Two Sample Tests for Means

Fifth grade students from two neighboring counties took a placement exam.

Group 1, from County 1, consisted of 57 students. The sample mean score for these students was 77.2 and the true
variance is known to be 15.3. Group 2, from County 2, consisted of 63 students and had a sample mean score of 75.3
and the true variance is known to be 19.7.

From previous years of data, it is believed that the scores for both counties are normally distributed.

Derive a test to determine whether or not the two population means are the same.

𝐻0 : 𝜇1 = 𝜇2

𝐻1 : 𝜇1 ̸= 𝜇2

Suppose that 𝑋1,1, 𝑋1,2, . . . , 𝑋1,𝑛1
is a random sample of size 𝑛1 from the normal distribution with mean 𝜇1 and

variance 𝜎2
1 . Suppose that 𝑋2,1, 𝑋2,2, . . . , 𝑋2,𝑛2

is a random sample of size 𝑛2 from the normal distribution with
mean 𝜇2 and variance 𝜎2

2 .

• Suppose that 𝜎2
1 and 𝜎2

2 are known and that the samples are independent.

𝐻0 : 𝜇1 = 𝜇2 𝐻1 : 𝜇1 ̸= 𝜇2

𝐻0 : 𝜇1 − 𝜇2 = 0

𝐻1 : 𝜇1 − 𝜇2 ̸= 0

Think of this as $
𝜃 = 0 versus 𝜃 ̸= 0

for
𝜃 = 𝜇1 − 𝜇2

$

Step one

Choose an estimator for 𝜃 = 𝜇1 − 𝜇2

𝜃 = �̄�1 − �̄�2

Step Two

Give the “form” of the test. Reject 𝐻0, in favor of 𝐻1 if either 𝜃 > 𝑐 or 𝜃 < −𝑐 for some c to be determined.

Step Three

Find 𝑐 using 𝛼 Will be working with the random variable

�̄�1 − �̄�2

We need to know its distribution. . .

�̄�1 − �̄�2 is normally distributed.

100 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Step Three

Find c using 𝛼.

�̄�1 − �̄�2 is normally distributed

𝑋1 −𝑋2 ∼ 𝑁

(︂
𝜇1 − 𝜇2,

𝜎2
1

𝑛1
+

𝜎2
2

𝑛1

)︂
𝑍 =

𝑋1 −𝑋2 − (𝜇1 − 𝜇2)√︁
𝜎2
1

𝑛1
+

𝜎2
2

𝑛2

∼ 𝑁(0, 1)

𝛼 = 𝑃 (Type I Error)

= 𝑃 (Reject 𝐻0; 𝜃 = 0)

= 𝑃
(︀
𝑋1 −𝑋2 > 𝑐 or 𝑋1 −𝑋2 < −𝑐; 𝜃 = 0

)︀
= 1− 𝑃

(︀
−𝑐 ≤ 𝑋1 −𝑋2 ≤ 𝑐; 𝜃 = 0

)︀
= 1− 𝑃

(︀
−𝑐 ≤ 𝑋1 −𝑋2 ≤ 𝑐; 𝜃 = 0

)︀
𝛼 = 1− 𝑃

⎛⎝ −𝑐√︁
𝜎2
1

𝑛1
+

𝜎2
2

𝑛2

≤ 𝑍 ≤ 𝑐√︁
𝜎2
1

𝑛1
+

𝜎2
2

𝑛2

⎞⎠
1− 𝛼 = 𝑃

⎛⎝ −𝑐√︁
𝜎2
1

𝑛1
+

𝜎2
2

𝑛2

≤ 𝑍 ≤ 𝑐√︁
𝜎2
1

𝑛1
+

𝜎2
2

𝑛2

⎞⎠

1.13. Hypothesis Testing 101

ml_notes.akkefa.com, Release 0.0.1

Step Four

Conclusion

Reject 𝐻0, in favor of 𝐻1, if

𝑋1 −𝑋2 > 𝑧𝛼/2

√︃
𝜎2
1

𝑛1
+

𝜎2
2

𝑛2

or

𝑋1 −𝑋2 < −𝑧𝛼/2

√︃
𝜎2
1

𝑛1
+

𝜎2
2

𝑛2

Example

𝑛1 = 57 𝑛2 = 63
𝑥1 = 77.2 𝑥2 = 75.3
𝜎2
1 = 15.3 𝜎2

2 = 19.7

Suppose that 𝛼 = 0.05. $

𝑧𝛼/2 = 𝑧0.025 = 1.96

𝑧𝛼/2

√︃
𝜎2
1

𝑛1
+

𝜎2
2

𝑛2
= 1.49

$

𝑧𝛼/2

√︃
𝜎2
1

𝑛1
+

𝜎2
2

𝑛2
= 1.49

𝑥1 − 𝑥2 = 77.2− 75.3 = 1.9

So,

�̄�1 − �̄�2 > 𝑧𝛼/2

√︃
𝜎2
1

𝑛1
+

𝜎2
2

𝑛2

and we reject 𝐻0. The data suggests that the true mean scores for the counties are different!

1.13.13 Two Sample t-Tests for a Difference of Means

Fifth grade students from two neighboring counties took a placement exam.

• Group 1, from County A, consisted of 8 students. The sample mean score for these students was 77.2 and the
sample variance is 15.3.

• Group 2, from County B, consisted of 10 students and had a sample mean score of 75.3 and the sample variance
is 19.7.

Pooled Variance

𝑆2
𝑝 =

(𝑛1 − 1)𝑆2
1 + (𝑛2 − 1)𝑆2

2

𝑛1 + 𝑛2 − 2

102 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Step Four

Reject 𝐻0, in favor of 𝐻1, if

�̄�1 − �̄�2 > 𝑡𝛼/2,𝑛1+𝑛2−2

√︃(︂
1

𝑛1
+

1

𝑛2

)︂
𝑆2
𝑃

or

�̄�1 − �̄�2 < −𝑡𝛼/2,𝑛1+𝑛2−2

√︃(︂
1

𝑛1
+

1

𝑛2

)︂
𝑠2𝑃

𝑛1 = 8 𝑛1 = 10
𝑥1 = 77.2 𝑥1 = 75.3
𝑠21 = 15.3 𝑠22 = 19.7
𝛼 = 0.01 𝑡0.005,16 = 2.92

𝑠2𝑝 =
(𝑛1−1)𝑆2

1+(𝑛2−1)𝑆2
2

𝑛1+𝑛2−2

= 17.775

𝑥1 − 𝑥2 = 77.2− 75.3 = 1.9

𝑡𝛼/2,𝑛1+𝑛2−2

√︃(︂
1

𝑛1
+

1

𝑛2

)︂
𝑆2
𝑃

= 2.92

√︃(︂
1

8
+

1

10

)︂
(17.775)

= 5.840

Since �̄�1−�̄�2 = 1.9 is not above 5.840, or below−5.840 we fail to reject𝐻0, in favor of𝐻1 at 0.01 level of significance.

The data do not indicate that there is a significant difference between the true mean scores for counties 𝐴 and 𝐵.

1.13.14 Welch’s Test and Paired Data

Two Populations: Test

𝐻0 : 𝜇1 = 𝜇2

𝐻1 : 𝜇1 ̸= 𝜇2

• Suppose that 𝑋1,1, 𝑋1,2, . . . , 𝑋1,𝑛1
is a random sample of size 𝑛1 from the normal

distribution with mean 𝜇1 and variance 𝜎2
1 .

• Suppose that 𝑋2,1, 𝑋2,2, . . . , 𝑋2,𝑛 is a random sample of size 𝑛2 from the normal distribution with mean 𝜇2 and
variance 𝜎2

2 .

• Suppose that 𝜎2
1 and 𝜎2

2 are unknown and that the samples are independent. Don’t assume that 𝜎2
1 and 𝜎2

2 are
equal!

Welch says that:

�̄�1 − �̄�2 − (𝜇1 − 𝜇2)√︁
𝑠21
𝑛1

+
𝑠22
𝑛2

has an approximate t-distribution with 𝑟 degrees of freedom where

𝑟 =
𝑆2
1/𝑛1 + 𝑆2

2/𝑛2

(𝑆2
1/𝑛1)

2

𝑛1−1 +
(𝑆2

2/𝑛2)
2

𝑛2−1

1.13. Hypothesis Testing 103

ml_notes.akkefa.com, Release 0.0.1

rounded down.

Example

A random sample of 6 students’ grades were recorded for Midterm 1 and Midterm 2. Assuming exam scores are
normally distributed, test whether the true (total population of students) average grade on Midterm 2 is greater than
Midterm 1. = 0.05

Student Midterm 1 Grade Midterm 2 Grade
1 72 81
2 93 89
3 85 87
4 77 84
5 91 100
6 84 82

Student Midterm 1 Grade Midterm 2 Grade Differences: minus 2 Midterm 1
1 72 81 9
2 93 89 -4
3 85 87 2
4 77 84 7
5 91 100. 9
6 84 82 -2

104 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

The Hypotheses: Let 𝜇 be the true average difference for all students.

𝐻0 : 𝜇 = 0

𝐻1 : 𝜇 > 0

This is simply a one sample t-test on the differences.

Data:

9,−4, 2, 7, 9,−2∑︁
𝑥𝑖 = 23

∑︁
𝑥2
𝑖 = 267 𝑛 = 6

This is simply a one sample t-test on the differences.

This is simply a one sample t-test on the differences.

�̄� = 3.5

𝑠2 =

∑︀
𝑥2
𝑖 − (

∑︀
𝑥𝑖)

2
/𝑛

𝑛− 1
= 32.3

𝑡𝛼,𝑛−1 = 𝑡0.05,5 = 2.01

Reject 𝐻0, in favor of 𝐻1, if

𝑋 > 𝜇0 + 𝑡𝛼,𝑛−1
𝑆√
𝑛

3.5 > 4.6

Conclusion: We fail to reject h0 , in favor of h1 , at 0.05 level of significance.

These data do not indicate that Midterm 2 scores are higher than Midterm 1 scores

1.13.15 Comparing Two Population Proportions

A random sample of 500 people in a certain county which is about to have a national election were asked whether they
preferred “Candidate A” or “Candidate B”. From this sample, 320 people responded that they preferred Candidate A.

A random sample of 400 people in a second county which is about to have a national election were asked whether they
preferred “Candidate A” or “Candidate B”.

From this second county sample, 268 people responded that they preferred Candidate 𝐴.

𝑝1 =
320

500
= 0.64

𝑝2 =
268

400
= 0.67

Test

𝐻0 : 𝑝1 = 𝑝2 𝐻1 : 𝑝1 ̸= 𝑝2

Change to:

𝐻0 : 𝑝1 − 𝑝2 = 0

𝐻1 : 𝑝1 − 𝑝2 ̸= 0

1.13. Hypothesis Testing 105

ml_notes.akkefa.com, Release 0.0.1

Estimate 𝑝1 − 𝑝2 with 𝑝1 − 𝑝2 For large enough samples,

̂︀𝑝approx
1 𝑁

(︂
𝑝1,

𝑝1 (1− 𝑝1)

𝑛1

)︂
and

𝑝approx
2 𝑁

(︂
𝑝2,

𝑝2 (1− 𝑝2)

𝑛1

)︂
𝑝1 − 𝑝2 ∼ 𝑁(?, ?)

𝐸 [𝑝1 − 𝑝2] = 𝐸 [𝑝1]− 𝐸 [𝑝2] = 𝑝1 − 𝑝2

Var [𝑝1 − 𝑝2]
indep
= Var [𝑝1] + Var [𝑝2]

=
𝑝1 (1− 𝑝1)

𝑛1
+

𝑝2 (1− 𝑝2)

𝑛2

Use estimators for p1 and p2 assuming they are the same.

• Call the common value p.

• Estimate by putting both groups together.

𝑝1 =
320

500
= 0.64 𝑝2 =

268

400
= 0.67

we have

𝑝 =
320 + 268

500 + 400
=

588

900
=

49

75

≈ 0.6533

𝑍 :=
𝑝1 − 𝑝2 − (𝑝1 − 𝑝2)√︁

𝑝(1−𝑝)
𝑛1

+ 𝑝(1−𝑝)
𝑛2

∼ 𝑁(0, 1)

=
𝑝1 − 𝑝2 − (𝑝1 − 𝑝2)√︂
𝑝(1− 𝑝)

(︁
1
𝑛1

+ 1
𝑛2

)︁
Two-tailed test with z-critical values. . .

𝑝 =
320 + 268

500 + 400
=

588

900
=

49

75

𝑍 =
0.64− 0.67− 0√︁

0.6533(1− 0.6533)
(︀

1
500 + 1

400

)︀
= 0.9397

𝑧0.025 = 1.96

qnorm(1-0.05/2)

𝑍 = −0.9397 does not fall in the rejection region!

106 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

1.13.16 Hypothesis Tests for the Exponential

Suppose that 𝑋1, 𝑋2, . . . , 𝑋𝑛 is a random sample from the exponential distribution with rate 𝜆 > 0. Derive a hypoth-
esis test of size 𝛼 for

𝐻0 : 𝜆 = 𝜆0 vs. 𝐻1 : 𝜆 > 𝜆0

What statistic should we use?

Test 1: Using the Sample Mean

Step One

Choose a statistic.

�̄�

Step Two

Give the form of the test Reject 0 , in favor of h1 , if _bar <

for some c to be determined.

1.13. Hypothesis Testing 107

ml_notes.akkefa.com, Release 0.0.1

Step Three

𝛼 = 𝑃 (Type I Error)

= 𝑃 (Reject 𝐻0;𝜆0)

= 𝑃
(︀
𝑋 < 𝑐;𝜆0

)︀
= 𝑃 (2𝑛𝜆0𝑥 < 2𝑛𝜆0𝑐;𝜆0)

= 𝑃 (𝑊 < 2𝑛𝜆0𝑐;𝜆0)

where 𝑊 ∼ 𝜒2(2𝑛)

Step Four

Reject 𝐻0, in favor of 𝐻1, if

�̄� <
𝜒2
1−𝛼,2𝑛

2𝑛𝜆0

𝜒2
𝛼,𝑛 In R, get 𝜒2

0.10,6

by typing qchisq(0.90,6)

1.13.17 Best Test

1.13.18 UMP Tests

Suppose that 𝑋1, 𝑋2, . . . , 𝑋𝑛 is a random sample from the exponential distribution with rate 𝜆 > 0.

Derive a uniformly most powerful hypothesis test of size 𝛼 for

𝐻0 : 𝜆 = 𝜆0 vs. 𝐻1 : 𝜆 > 𝜆0

(Was 𝐻1 : 𝜆 = 𝜆1 for 𝜆1 > 𝜆0)

108 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Step One

Consider the simple versus simple hypotheses

𝐻0 : 𝜆 = 𝜆0 vs. 𝐻1 : 𝜆 = 𝜆1

for some fixed 𝜆1 > 𝜆0.

###Steps Two, Three, and Four

Find the best test of size 𝛼 for

𝐻0 : 𝜆 = 𝜆0 vs. 𝐻1 : 𝜆 = 𝜆1

for some fixed 𝜆1 > 𝜆0. This test is to reject 𝐻0, in favor of 𝐻1 if

𝑥 <
𝜒2
1−𝛼,2𝑛

2𝑛𝜆0

Note that this test does not depend on the particular value of 𝜆1. -It does, however, depend on the fact that 𝜆1 > 𝜆0

The “UMP” test for

𝐻0 : 𝜆 = 𝜆0 vs. 𝐻1 : 𝜆 > 𝜆0

is to reject 𝐻0, in favor of 𝐻1 if

𝑥 <
𝜒2
1−𝛼,2𝑛

2𝑛𝜆0

The “UMP” test for

𝐻0 : 𝜆 = 𝜆0 vs. 𝐻1 : 𝜆 < 𝜆0

is to reject 𝐻0, in favor of 𝐻1 if

𝑥 >
𝜒2
,2𝑛

2𝑛𝜆0

1.13.19 Test for the Variance of the Normal Distribution

Suppose that 𝑋1, 𝑋2, . . . , 𝑋𝑛 is a random sample from the normal distribution with mean 𝜇 and variance 𝜎2. Derive
a test of size/level 𝛼 for

𝐻0 : 𝜎2 ≥ 𝜎2
0 vs. 𝐻1 : 𝜎2 < 𝜎2

0

step 1

Choose a statistic/estimator for 𝜎2

𝑠2 =

∑︀𝑛
𝑖=1

(︀
𝑋𝑖 − �̄�

)︀2
𝑛− 1

1.13. Hypothesis Testing 109

ml_notes.akkefa.com, Release 0.0.1

step 2

Give the form of the test. Reject 𝐻0, in favor of 𝐻1, if

𝑆2 < 𝐶

for some 𝑐 to be determined.

step 3

find c using alpha

𝛼 = max𝑃 (Type I Error)

= max
𝜎2≥𝜎2

0

𝑃
(︀

Reject 𝐻0;𝜎2
)︀

= max
𝜎2≥𝜎2

0

𝑃
(︀
𝑆2 < 𝑐;𝜎2

)︀
= 𝑃

(︂(︂
(𝑛− 1)𝑆2

𝜎2

)︂
(𝑛− 1)𝑐

𝜎2
;𝜎2

)︂
= 𝑃

(︂
𝑊 <

(𝑛− 1)𝑐

𝜎2

)︂
where 𝑊 ∼ 𝜒2(𝑛− 1)

110 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Step 4

Reject 𝐻0, in favor of 𝐻1, if

𝑆2 <
𝜎2
0𝜒

2
1−𝛼,𝑛−1

𝑛− 1

Example

A lawn care company has developed and wants to patent a new herbicide applicator spray nozzle. Example: For safety
reasons, they need to ensure that the application is consistent and not highly variable. The company selected a random
sample of 10 nozzles and measured the application rate of the herbicide in gallons per acre

The measurements were recorded as

0.213, 0.185, 0.207, 0.163, 0.179
0.161, 0.208, 0.210, 0.188, 0.195

Assuming that the application rates are normally distributed, test the following hypotheses at level 0.04.

𝐻0 : 𝜎2 = 0.01 𝐻1 : 𝜎2 > 0.01

Get sample variance in 𝑅.

𝑥 < −𝑐(0.213, 0.185, 0.207, 0.163, 0.179
0.161, 0.208, 0.210, 0.188, 0.195)

or

𝑥 < − scan 0

Hit and then input numbers, one by one, hitting in between and <Enter > at the end.

Compute variance by typing

var(𝑥)

or ((sum (𝑥∧2)− (sum(𝑥)∧2) /10) /9 Result: 0.000364

Reject 𝐻0, in favor of 𝐻1, if 𝑆2 > 𝑐.

𝛼 = 𝑃
(︀
𝑆2 > 𝑐;𝜎2 = 0.01

)︀
= 𝑃

(︂
(𝑛− 1)𝑆2

𝜎2
>

9𝑐

0.01
;𝜎2 = 0.01

)︂
= 𝑃

(︂
𝑊 >

9𝑐

0.01

)︂
Reject 𝐻0, in favor of 𝐻1, if 𝑆2 > 𝑐

0.04 = 𝑃

(︂
𝑊 >

9𝑐

0.01

)︂
9𝑐

0.01
= 𝜒2

0.04,9 = 17.61

qchisq(1-0.04,9)

Reject 𝐻0, in favor of 𝐻1, if 𝑆2 > 𝑐

𝑐 = (17.61)(0.01)/9 ≈ 0.0196

𝑠2 = 0.000364

Fail to reject 𝐻0, in favor of 𝐻1, at level 0.04. There is not sufficient evidence in the data to suggest that 𝜎2 > 0.01.

1.13. Hypothesis Testing 111

ml_notes.akkefa.com, Release 0.0.1

1.14 Introduction

Calculus is a branch of mathematics that gives tools to study rate of change of functions trough two main areas: deriva-
tives and integrals.

In the context of machine learning and data science, you can for instance use derivatives to optimize the parameters of
a model with gradient descent. You might use integrals to calculate area under the curve.

1.14.1 Functions

A function is a rule that takes one or more inputs and produces a single output. For example, the function 𝑓(𝑥) = 𝑥+1
takes a single input 𝑥, adds one to it, and produces a single output. In algebra, functions are written using symbols and
formulas. For example, the function 𝑓(𝑥) = 𝑥 + 1 can be written as 𝑓 : 𝑥→ 𝑥 + 1. The input to a function is called
the argument or input variable. The output is called the value or output variable.

Functions are often written using the following notation:

𝑦 = 𝑓(𝑥)

The notation above is read as “𝑦 equals 𝑓 of 𝑥” or “𝑦 is a function of 𝑥”. The notation above is useful because it allows
us to define a function without specifying its name. For example, we can define a function 𝑓 as follows:

𝑓(𝑥) = 𝑥2

We can then use the function 𝑓 to compute the square of any number. For example, 𝑓(2) = 22 = 4 and 𝑓(3) = 32 = 9.

f(𝑥) =
√
𝑥 + 6

f(6) =
√

10 + 6

f(6) = 4.0

𝑓(𝑥) =
𝑥− 3

𝑥 + 2

𝑓(3) =
3− 3

3 + 2
=

0

5
= 0

Domain and Range of a Function

The domain of a function is the set of all possible inputs to the function. The range of a function is the set of all
possible outputs of the function. For example, the function 𝑓(𝑥) = 𝑥2 has a domain of all real numbers and a range
of all non-negative real numbers. The domain of a function is often written as 𝐷(𝑓) and the range is often written as
𝑅(𝑓).

𝑦 = 𝑓(𝑥)

𝑦 = 𝑥2

import seaborn as sb

func = lambda x: x ** 2

x = [-1,-2,-3, -4, 1, 2, 3, 4]
y = [func(i) for i in x]

sb.lineplot(x=x, y=y)

112 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

<Axes: >

Piecewise Functions

A piecewise function is a function that is defined by multiple sub-functions, each sub-function applying to a different
interval of the main function’s domain. For example, the function 𝑓(𝑥) = |𝑥| is defined by two sub-functions:

𝑓(𝑥) =

{︃
𝑥 if 𝑥 ≥ 0

−𝑥 if 𝑥 < 0

1.14.2 Expoents

An exponent is a number that indicates how many times a base number is multiplied by itself. For example, 23 is the
same as 2× 2× 2 and 24 is the same as 2× 2× 2× 2. The number 2 is called the base and the number 3 is called the
exponent. Exponents are often written using the following notation:

23 = 2× 2× 2 = 8

The notation above is read as “two to the power of three” or “two cubed”.

1.14. Introduction 113

ml_notes.akkefa.com, Release 0.0.1

Negative Exponents

A negative exponent indicates that the base number should be divided by itself a certain number of times. For example,
2−3 is the same as 1

23 and 2−4 is the same as 1
24 . The number 2 is called the base and the number −3 is called the

exponent. Negative exponents are often written using the following notation:

2−3 =
1

23
=

1

8

The notation above is read as “two to the power of negative three” or “two to the power of minus three”.

Fractional Exponents

A fractional exponent indicates that the base number should be multiplied by itself a certain number of times. For
example, 2

1
2 is the same as

√
2 and 2

1
3 is the same as 3

√
2. The number 2 is called the base and the number 1

2 is called
the exponent. Fractional exponents are often written using the following notation:

2
1
2 =
√

2 = 1.414213562373095

The notation above is read as “two to the power of one half” or “two to the power of one over two”.

1.14.3 Logarithms

A logarithm is the inverse of an exponent. For example, the logarithm of 23 is 3. The logarithm of a number 𝑥 to the
base 𝑏 is written as log𝑏(𝑥). For example, log2(8) = 3 because 23 = 8.

Common Logarithms

The common logarithm of a number 𝑥 is the logarithm of 𝑥 to the base 10. The common logarithm of 𝑥 is written as
log(𝑥). For example, log(100) = 2 because 102 = 100.

Natural Logarithms

The natural logarithm of a number 𝑥 is the logarithm of 𝑥 to the base 𝑒. The natural logarithm of 𝑥 is written as ln(𝑥).
For example, ln(100) = 4.60517 because 𝑒4.60517 = 100.

1.14.4 Polynomials

A polynomial is an expression consisting of variables and coefficients, that involves only the operations of addition,
subtraction, multiplication, and non-negative integer exponents.

For example, 𝑥2 + 2𝑥 + 1 is a polynomial because it consists of the variables 𝑥 and the coefficients 1 and 2.

The degree of a polynomial is the highest degree of its terms. For example, the polynomial 𝑥2 + 2𝑥 + 1 has a degree
of 2 because its highest degree term is 𝑥2.

114 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

1.15 Derivatives and Partial Derivatives

Everything around us is changing, the universe is expanding, planets are moving, people are aging, even atoms don’t
stay in the same state, they are always moving or changing. Everything is changing with time. So how do we measure
it?

How things change?

Suppose we are going on a car trip with our family. The speed of the car is constantly changing. Similarly the tem-
perature at any given point on a day is changing. The overall temperature of Earth is changing. So we need a way to
measure that change. Let’s take the example of a family trip. Suppose the overall journey of our trip looks like this:

import seaborn as sns
import matplotlib.pyplot as plt

sns.set_style('darkgrid')

params = {'legend.fontsize': 'medium',
'figure.figsize': (10, 8),
'figure.dpi': 100,
'axes.labelsize': 'medium',
'axes.titlesize':'medium',
'xtick.labelsize':'medium',
'ytick.labelsize':'medium'}

plt.rcParams.update(params)

Sample data (replace this with your own data)
time = [1, 2, 3, 4, 5]
distance = [10, 20, 25, 35, 40]

Create a scatter plot
sns.scatterplot(x=time, y=distance, label='Distance vs. Time')

Create a line plot on top of the scatter plot
sns.lineplot(x=time, y=distance, color='red', label='Distance Line')

Add labels and title
plt.xlabel('Time')
plt.ylabel('Distance')
plt.title('Distance vs. Time with Distance Line')

Show legend
plt.legend()

Show the plot
plt.show()

1.15. Derivatives and Partial Derivatives 115

ml_notes.akkefa.com, Release 0.0.1

1.15.1 Average vs Instantaneous rate of change

If we look at the graph, we can see that the car covered 40 miles in 5 hours. Now the average speed or the average rate
of change will be the total distance divided by total time of the whole journey which in case is

Total Distance
Total time taken

=
40

5
= 8 miles per hour

But what if we want to find the rate of change at any given time, this is where the instantaneous rate of change comes
into play. The instantaneous rate of change is given by the change at any given time or point. Take the example of a
speedometer which gives you the change in speed every moment. We can also calculate the instantaneous change using
a graph using the concept of a slope.

116 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

1.15.2 Slope of a line

Slope of a line is simply defined as the rate of change in the vertical direction due to rate of change in the horizontal
direction or simply

Slope =
Rate of change in 𝑦

Rate of change in 𝑥
=

∆𝑦

∆𝑥
=

𝑦2− 𝑦1

𝑥2− 𝑥1

But what about the instantaneous rate of change? Well, if you look at a curved line, the slope will be different for
different points.

This instantaneous rate of change at any point is called the derivative at that point and is defined as:

Rate of change in 𝑦

Very small change in 𝑥
=

𝑑𝑦

𝑑𝑥
=

𝑑

𝑑𝑥
(𝑓(𝑥))

1.15.3 Derivative Explained

The derivative of a function is related to its rate of change. The rate of change tells you how much the output of the
function changes when a change is done to the input. It is calculated as the ratio between a change in the output and
the corresponding change in the input.

Graphically, it is the slope of the tangent at a given point of the function.

Let’s take an example. Suppose we have a function like this:

𝑦 = 𝑓(𝑥) = 𝑥2

The graph of this function looks like this

seaborn grah of x squared function
x = [-5, -4, -3, -2, -1 , 0 , 1, 2, 3, 4, 5]
func = lambda i: i**2

y = [func(i) for i in x]

sns.lineplot(x=x, y=y)
plt.show()

1.15. Derivatives and Partial Derivatives 117

ml_notes.akkefa.com, Release 0.0.1

Now let’s say we want to find the slope or instantaneous change in y due to x. Let’s say x change from x to x+h then:

𝑦 = 𝑓(𝑥) = 𝑥2

Lets say y changes due change in x so

𝑥2 = 𝑥 + ℎ

then

𝑦2 = 𝑓(𝑥 + ℎ)

𝑚 =
𝑦2 − 𝑦1
𝑥2 − 𝑥1

=
𝑓(𝑥 + ℎ)− 𝑓(𝑥)

(𝑥 + ℎ)− 𝑥

=
(𝑥 + ℎ)2 − 𝑥2

(𝑥 + ℎ)− 𝑥

=
𝑥2 + ℎ2 + 2𝑥ℎ− 𝑥2

𝑥− 𝑥− ℎ

=
ℎ(2𝑥 + ℎ)

ℎ
= 2𝑥

118 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

since h -> 0 so h will be zero.

1.15.4 Partial Derivatives

Now considering the derivative of a function with a single input, a partial derivative of a function is just the derivative
of a function with multiple inputs with respect to a single variable i.e. the change in that function caused by the change
in a single input. Let’s suppose a function

𝑓(𝑥, 𝑦) = 𝑥2𝑦 + sin 𝑦

Now we cannot find the derivative of this function directly since it depends on two inputs. So what we do is we find
the derivative of this function assuming that one of the inputs is constant. Or simply that what change in the function
is caused by the slight change in that single input. Let’s find the partial derivative of this function with respect to both
inputs one by 1

To calculate the partial derivatives of the given function (𝑓(𝑥, 𝑦) = 𝑥2𝑦 + sin(𝑦)) with respect to x and y, we will find
the derivative of each term separately and then combine them using the rules of partial differentiation.

𝜕(𝑓(𝑥, 𝑦))

𝜕𝑥
= lim

ℎ→0

𝑓(𝑥 + ℎ, 𝑦)− 𝑓(𝑥, 𝑦)

ℎ

Partial derivative with respect to x

denoted as 𝜕𝑓
𝜕𝑥 :

We treat 𝑦 as a constant when taking the derivative with respect to 𝑥. Therefore, we differentiate 𝑥2𝑦 with respect to 𝑥
while keeping 𝑦 constant:

𝜕

𝜕𝑥
(𝑥2𝑦) = 2𝑥𝑦

The derivative of sin(𝑦) with respect to 𝑥 is 0 because sin(𝑦) does not depend on 𝑥. So, 𝜕
𝜕𝑥 (sin(𝑦)) = 0.

Now, we can combine these partial derivatives:

𝜕𝑓

𝜕𝑥
= 2𝑥𝑦 + 0 = 2𝑥𝑦

So, the partial derivative of 𝑓(𝑥, 𝑦) with respect to 𝑥𝑖𝑠2xy$.

𝜕𝑓

𝜕𝑥
= 2𝑥𝑦

Partial derivative with respect to y

denoted as 𝜕𝑓
𝜕𝑦

Now, we treat x as a constant when taking the derivative with respect to y. Therefore, we differentiate (𝑥2𝑦 with respect
to 𝑦 while keeping 𝑥 constant:

𝜕

𝜕𝑦
(𝑥2𝑦) = 𝑥2

The derivative of sin(𝑦) with respect to y is cos(𝑦), so 𝜕
𝜕𝑦 (sin(𝑦)) = cos(𝑦).

Now, we can combine these partial derivatives:

𝜕𝑓

𝜕𝑦
= 𝑥2 + cos(𝑦)

So, the partial derivative of 𝑓(𝑥, 𝑦) with respect to y is 𝑥2 + cos(𝑦).

1.15. Derivatives and Partial Derivatives 119

ml_notes.akkefa.com, Release 0.0.1

In summary, the partial derivatives of the given function 𝑓(𝑥, 𝑦) = 𝑥2𝑦 + sin(𝑦) are:

𝜕𝑓

𝜕𝑥
= 2𝑥𝑦

and

𝜕𝑓

𝜕𝑦
= 𝑥2 + cos(𝑦)

Now if we want to find the partial derivative of the function at the point (-1, 2). We can just chug in values in both
partial equations and find the change as:

𝜕𝑓

𝜕𝑥
(−1, 2) = 2𝑥𝑦 = 2 · (−1) · (2) = −4

Similarly

𝜕𝑓

𝜕𝑦
(−1, 2) = 𝑥2 + cos 𝑦 = (−1)2 + cos(2) = 0.5838

So we say that the change in the function with respect to input x is -4 times and with respect to y is +0.5838.

This means that the function is more sensitive to x than to y.

E.g https://www.youtube.com/watch?v=dfvnCHqzK54

https://www.youtube.com/watch?v=wqPt3qjB6uA&ab_channel=Dr.DataScience

https://www.youtube.com/watch?v=sIX_9n-1UbM

1.15.5 Derivative rules

Constant Rule

If you have a number (like 5 or 10) all by itself, its derivative is always 0. This means it doesn’t change when you take
the derivative.

A constant represents a horizontal line on the graph, which has no slope (i.e., it’s perfectly flat). Therefore, the rate of
change (derivative) is zero.

Proof: Let 𝑓(𝑥) = 𝑐, where c is a constant. Then, by definition, the derivative of 𝑓(𝑥) is

𝑑𝑓

𝑑𝑥
= lim

ℎ→0

𝑓(𝑥 + ℎ)− 𝑓(𝑥)

ℎ
= lim

ℎ→0

𝑐− 𝑐

ℎ
= lim

ℎ→0

0

ℎ
= 0

Power Rule

If you have a number with an exponent (like 𝑥2 or 𝑥3), you can bring the exponent down and subtract 1 from it. For
example, if you have 𝑥2, the derivative is 2x because 2 times 𝑥1 is 2x.

The derivative of 𝑥𝑛 with respect to x is 𝑛𝑥𝑛−1, where n is a constant. This rule is derived using the limit definition of
the derivative and the binomial theorem.

Proof: Start with the limit definition of the derivative

𝑑

𝑑𝑥
(𝑥𝑛) = lim

ℎ→0

(𝑥 + ℎ)𝑛 − 𝑥𝑛

ℎ

120 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Use the binomial theorem to expand (𝑥 + ℎ)𝑛 $(𝑥 + ℎ)𝑛 = 𝑥𝑛 + 𝑛𝑥𝑛−1ℎ + higher order terms in ℎ$ Substitute this
into the limit definition

𝑑

𝑑𝑥
(𝑥𝑛) = lim

ℎ→0

(𝑥𝑛 + 𝑛𝑥𝑛−1ℎ + higher order terms in ℎ)− 𝑥𝑛

ℎ

Cancel the 𝑥𝑛 terms and divide by ℎ

𝑑

𝑑𝑥
(𝑥𝑛) = lim

ℎ→0

𝑛𝑥𝑛−1ℎ + higher order terms in ℎ

ℎ

Simplify and take the limit as h approaches 0: $ 𝑑
𝑑𝑥 (𝑥𝑛) = 𝑛𝑥𝑛−1$

Sum Rule

If you’re adding or subtracting two things, like f(x) + g(x) or f(x) - g(x), you can take the derivative of each thing
separately and keep them separate. For example, if you have 3𝑥2 + 4𝑥, you can find the derivative of 3𝑥2 (which is 6x)
and the derivative of 4x (which is 4), and then you keep them together as 6x + 4.

Chain Rule

Sometimes, you have functions inside of functions. Imagine you have 𝑓(𝑔(𝑥)). To find the derivative of that, you first
find the derivative of the outer function (f) and then the derivative of the inner function (g). You multiply them together.
It’s like doing things step by step.

The chain rule is a fundamental rule in calculus that allows us to find the derivative of a composite function. In other
words, it tells us how to differentiate a function that is composed of two or more functions. The chain rule is often
stated as follows:

If f(u) and g(x) are differentiable functions, then the derivative of their composition f(g(x)) is given by:

𝑑

𝑑𝑥
[𝑓(𝑔(𝑥))] = 𝑓 ′(𝑔(𝑥)) · 𝑔′(𝑥)

Here’s an explanation of the chain rule with an example and a proof:

Explanation:

The chain rule essentially states that to find the derivative of a composite function, you first take the derivative of the
outer function with respect to its inner function and then multiply it by the derivative of the inner function with respect
to the variable of interest (in this case, x).

Example

Let’s use an example to illustrate the chain rule. Consider the function 𝑦 = 𝑓(𝑢) = 𝑢2 and 𝑢 = 𝑔(𝑥) = 𝑥3. We want
to find the derivative of 𝑦 with respect to 𝑥 which is 𝑑𝑦

𝑑𝑥 .

1. Find 𝑑𝑦
𝑑𝑢 : This is the derivative of the outer function 𝑓(𝑢) with respect to its inner function 𝑢, which is 2𝑢.

2. Find 𝑑𝑢
𝑑𝑥 : This is the derivative of the inner function 𝑔(𝑥) with respect to 𝑥, which is 3𝑥2.

3. Apply the chain rule:
𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑢
· 𝑑𝑢
𝑑𝑥

= (2𝑢) · (3𝑥2) = 2 · 3𝑥2𝑢 = 6𝑥2𝑢

Now, substitute back 𝑢 = 𝑥3:

𝑑𝑦

𝑑𝑥
= 6𝑥2 · (𝑥3) = 6𝑥5

1.15. Derivatives and Partial Derivatives 121

ml_notes.akkefa.com, Release 0.0.1

So, the derivative of 𝑦 = 𝑥6 with respect to 𝑥 is 6𝑥5.

Proof :

The proof of the chain rule relies on the definition of the derivative and the limit concept. Let’s prove it step by step:

1. Start with the definition of the derivative of a function:
𝑑

𝑑𝑥
[𝑓(𝑢)] = lim

ℎ→0

𝑓(𝑢 + ℎ)− 𝑓(𝑢)

ℎ

1. Now, we want to find the derivative of the composition 𝑓(𝑔(𝑥)). Let 𝑣 = 𝑔(𝑥). So, we can write:
𝑑

𝑑𝑥
[𝑓(𝑔(𝑥))] =

𝑑

𝑑𝑥
[𝑓(𝑣)]

1. Using the definition of the derivative for 𝑓(𝑣), we have:

𝑑

𝑑𝑥
[𝑓(𝑣)] = lim

ℎ→0

𝑓(𝑣 + ℎ)− 𝑓(𝑣)

ℎ

2. Rewrite 𝑣 + ℎ as 𝑔(𝑥 + ℎ) because 𝑣 = 𝑔(𝑥):

𝑑

𝑑𝑥
[𝑓(𝑣)] = lim

ℎ→0

𝑓(𝑔(𝑥 + ℎ))− 𝑓(𝑔(𝑥))

ℎ

3. Now, we can see that this is precisely the definition of the derivative of 𝑓(𝑔(𝑥)). So, we’ve shown that:

𝑑

𝑑𝑥
[𝑓(𝑔(𝑥))] = lim

ℎ→0

𝑓(𝑔(𝑥 + ℎ))− 𝑓(𝑔(𝑥))

ℎ

1. And this can be simplified to:
𝑑

𝑑𝑥
[𝑓(𝑔(𝑥))] = 𝑓 ′(𝑔(𝑥)) · 𝑔′(𝑥)

So, the chain rule is proven. It tells us how to find the derivative of a composite function by considering the derivatives
of its components.

1.15.6 Backpropagation Chain rule

The chain rule is a crucial concept in neural network backpropagation, which is the algorithm used to train neural
networks. It allows us to efficiently calculate the gradients of the loss function with respect to the network’s parameters
(weights and biases) by decomposing the overall gradient into smaller gradients associated with each layer of the
network. Let’s explain how the chain rule is used in neural network backpropagation with an example.

Suppose we have a simple feedforward neural network with one hidden layer. Here’s a simplified network architecture:

• Input layer with 𝑛 neurons

• Hidden layer with 𝑚 neurons

• Output layer with 𝑘 neurons

The network has weights 𝑊 (1) for the connections between the input and hidden layers and weights 𝑊 (2) for the
connections between the hidden and output layers.

The forward pass of the network involves the following steps:

Compute the weighted sum and apply an activation function to the hidden layer:

𝑧(1) = 𝑋𝑊 (1) + 𝑏(1)

𝑎(1) = 𝜎(𝑧(1))

where 𝑋 is the input, 𝑊 (1) are the weights of the first layer, 𝑏(1) are the biases of the first layer, 𝜎(·) is the activation
function (e.g., sigmoid or ReLU), and 𝑎(1) is the output of the hidden layer.

122 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Compute the weighted sum and apply an activation function to the output layer:

𝑧(2) = 𝑎(1)𝑊 (2) + 𝑏(2)

𝑎(2) = 𝜎(𝑧(2))

where 𝑊 (2) are the weights of the second (output) layer, 𝑏(2) are the biases of the second layer, and 𝑎(2) is the final
output of the network.

Now, let’s assume we have a loss function 𝐿 that measures the error between the predicted output 𝑎(2) and the true
target values 𝑌 . The goal of backpropagation is to update the network’s weights and biases to minimize this loss.

To do this, we need to compute the gradients of the loss with respect to the network’s parameters. The chain rule comes
into play during this step. We calculate the gradients layer by layer, propagating the gradient backward through the
network:

1. Compute the gradient of the loss with respect to the output layer’s activations: $ 𝜕𝐿
𝜕𝑎(2) $

2. Use the chain rule to calculate the gradient of the loss with respect to the output layer’s weighted sum (𝑧(2)):
$ 𝜕𝐿
𝜕𝑧(2) = 𝜕𝐿

𝜕𝑎(2) · 𝜕𝑎
(2)

𝜕𝑧(2) $

3. Compute the gradient of the loss with respect to the second layer’s weights and biases (𝑊 (2) and 𝑏(2)): $ 𝜕𝐿
𝜕𝑊 (2) =

𝜕𝐿
𝜕𝑧(2) · 𝜕𝑧(2)

𝜕𝑊 (2)
𝜕𝐿

𝜕𝑏(2)
= 𝜕𝐿

𝜕𝑧(2) · 𝜕𝑧
(2)

𝜕𝑏(2)
$

4. Use the chain rule again to calculate the gradient of the loss with respect to the hidden layer’s activations (𝑎(1)):
$ 𝜕𝐿
𝜕𝑎(1) = 𝜕𝐿

𝜕𝑧(2) · 𝜕𝑧
(2)

𝜕𝑎(1) $

5. Compute the gradient of the loss with respect to the hidden layer’s weighted sum (𝑧(1)): $ 𝜕𝐿
𝜕𝑧(1) = 𝜕𝐿

𝜕𝑎(1) · 𝜕𝑎
(1)

𝜕𝑧(1) $

6. Finally, calculate the gradient of the loss with respect to the first layer’s weights and biases (𝑊 (1) and 𝑏(1)):
$ 𝜕𝐿
𝜕𝑊 (1) = 𝜕𝐿

𝜕𝑧(1) · 𝜕𝑧(1)

𝜕𝑊 (1)
𝜕𝐿

𝜕𝑏(1)
= 𝜕𝐿

𝜕𝑧(1) · 𝜕𝑧
(1)

𝜕𝑏(1)
$

The chain rule allows us to compute these gradients efficiently by breaking down the overall gradient into smaller
gradients associated with each layer. Once we have these gradients, we can use them to update the network’s weights
and biases using optimization algorithms like gradient descent. This iterative process of forward and backward passes,
driven by the chain rule, is how neural networks are trained to learn from data.

Importing Required Libraries
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import pandas as pd
import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt

%matplotlib inline

#Load the dataset
data = load_iris()
data

{'data': array([[5.1, 3.5, 1.4, 0.2],
[4.9, 3. , 1.4, 0.2],
[4.7, 3.2, 1.3, 0.2],
[4.6, 3.1, 1.5, 0.2],
[5. , 3.6, 1.4, 0.2],

(continues on next page)

1.15. Derivatives and Partial Derivatives 123

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

[5.4, 3.9, 1.7, 0.4],
[4.6, 3.4, 1.4, 0.3],
[5. , 3.4, 1.5, 0.2],
[4.4, 2.9, 1.4, 0.2],
[4.9, 3.1, 1.5, 0.1],
[5.4, 3.7, 1.5, 0.2],
[4.8, 3.4, 1.6, 0.2],
[4.8, 3. , 1.4, 0.1],
[4.3, 3. , 1.1, 0.1],
[5.8, 4. , 1.2, 0.2],
[5.7, 4.4, 1.5, 0.4],
[5.4, 3.9, 1.3, 0.4],
[5.1, 3.5, 1.4, 0.3],
[5.7, 3.8, 1.7, 0.3],
[5.1, 3.8, 1.5, 0.3],
[5.4, 3.4, 1.7, 0.2],
[5.1, 3.7, 1.5, 0.4],
[4.6, 3.6, 1. , 0.2],
[5.1, 3.3, 1.7, 0.5],
[4.8, 3.4, 1.9, 0.2],
[5. , 3. , 1.6, 0.2],
[5. , 3.4, 1.6, 0.4],
[5.2, 3.5, 1.5, 0.2],
[5.2, 3.4, 1.4, 0.2],
[4.7, 3.2, 1.6, 0.2],
[4.8, 3.1, 1.6, 0.2],
[5.4, 3.4, 1.5, 0.4],
[5.2, 4.1, 1.5, 0.1],
[5.5, 4.2, 1.4, 0.2],
[4.9, 3.1, 1.5, 0.2],
[5. , 3.2, 1.2, 0.2],
[5.5, 3.5, 1.3, 0.2],
[4.9, 3.6, 1.4, 0.1],
[4.4, 3. , 1.3, 0.2],
[5.1, 3.4, 1.5, 0.2],
[5. , 3.5, 1.3, 0.3],
[4.5, 2.3, 1.3, 0.3],
[4.4, 3.2, 1.3, 0.2],
[5. , 3.5, 1.6, 0.6],
[5.1, 3.8, 1.9, 0.4],
[4.8, 3. , 1.4, 0.3],
[5.1, 3.8, 1.6, 0.2],
[4.6, 3.2, 1.4, 0.2],
[5.3, 3.7, 1.5, 0.2],
[5. , 3.3, 1.4, 0.2],
[7. , 3.2, 4.7, 1.4],
[6.4, 3.2, 4.5, 1.5],
[6.9, 3.1, 4.9, 1.5],
[5.5, 2.3, 4. , 1.3],
[6.5, 2.8, 4.6, 1.5],
[5.7, 2.8, 4.5, 1.3],
[6.3, 3.3, 4.7, 1.6],

(continues on next page)

124 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

[4.9, 2.4, 3.3, 1.],
[6.6, 2.9, 4.6, 1.3],
[5.2, 2.7, 3.9, 1.4],
[5. , 2. , 3.5, 1.],
[5.9, 3. , 4.2, 1.5],
[6. , 2.2, 4. , 1.],
[6.1, 2.9, 4.7, 1.4],
[5.6, 2.9, 3.6, 1.3],
[6.7, 3.1, 4.4, 1.4],
[5.6, 3. , 4.5, 1.5],
[5.8, 2.7, 4.1, 1.],
[6.2, 2.2, 4.5, 1.5],
[5.6, 2.5, 3.9, 1.1],
[5.9, 3.2, 4.8, 1.8],
[6.1, 2.8, 4. , 1.3],
[6.3, 2.5, 4.9, 1.5],
[6.1, 2.8, 4.7, 1.2],
[6.4, 2.9, 4.3, 1.3],
[6.6, 3. , 4.4, 1.4],
[6.8, 2.8, 4.8, 1.4],
[6.7, 3. , 5. , 1.7],
[6. , 2.9, 4.5, 1.5],
[5.7, 2.6, 3.5, 1.],
[5.5, 2.4, 3.8, 1.1],
[5.5, 2.4, 3.7, 1.],
[5.8, 2.7, 3.9, 1.2],
[6. , 2.7, 5.1, 1.6],
[5.4, 3. , 4.5, 1.5],
[6. , 3.4, 4.5, 1.6],
[6.7, 3.1, 4.7, 1.5],
[6.3, 2.3, 4.4, 1.3],
[5.6, 3. , 4.1, 1.3],
[5.5, 2.5, 4. , 1.3],
[5.5, 2.6, 4.4, 1.2],
[6.1, 3. , 4.6, 1.4],
[5.8, 2.6, 4. , 1.2],
[5. , 2.3, 3.3, 1.],
[5.6, 2.7, 4.2, 1.3],
[5.7, 3. , 4.2, 1.2],
[5.7, 2.9, 4.2, 1.3],
[6.2, 2.9, 4.3, 1.3],
[5.1, 2.5, 3. , 1.1],
[5.7, 2.8, 4.1, 1.3],
[6.3, 3.3, 6. , 2.5],
[5.8, 2.7, 5.1, 1.9],
[7.1, 3. , 5.9, 2.1],
[6.3, 2.9, 5.6, 1.8],
[6.5, 3. , 5.8, 2.2],
[7.6, 3. , 6.6, 2.1],
[4.9, 2.5, 4.5, 1.7],
[7.3, 2.9, 6.3, 1.8],
[6.7, 2.5, 5.8, 1.8],

(continues on next page)

1.15. Derivatives and Partial Derivatives 125

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

[7.2, 3.6, 6.1, 2.5],
[6.5, 3.2, 5.1, 2.],
[6.4, 2.7, 5.3, 1.9],
[6.8, 3. , 5.5, 2.1],
[5.7, 2.5, 5. , 2.],
[5.8, 2.8, 5.1, 2.4],
[6.4, 3.2, 5.3, 2.3],
[6.5, 3. , 5.5, 1.8],
[7.7, 3.8, 6.7, 2.2],
[7.7, 2.6, 6.9, 2.3],
[6. , 2.2, 5. , 1.5],
[6.9, 3.2, 5.7, 2.3],
[5.6, 2.8, 4.9, 2.],
[7.7, 2.8, 6.7, 2.],
[6.3, 2.7, 4.9, 1.8],
[6.7, 3.3, 5.7, 2.1],
[7.2, 3.2, 6. , 1.8],
[6.2, 2.8, 4.8, 1.8],
[6.1, 3. , 4.9, 1.8],
[6.4, 2.8, 5.6, 2.1],
[7.2, 3. , 5.8, 1.6],
[7.4, 2.8, 6.1, 1.9],
[7.9, 3.8, 6.4, 2.],
[6.4, 2.8, 5.6, 2.2],
[6.3, 2.8, 5.1, 1.5],
[6.1, 2.6, 5.6, 1.4],
[7.7, 3. , 6.1, 2.3],
[6.3, 3.4, 5.6, 2.4],
[6.4, 3.1, 5.5, 1.8],
[6. , 3. , 4.8, 1.8],
[6.9, 3.1, 5.4, 2.1],
[6.7, 3.1, 5.6, 2.4],
[6.9, 3.1, 5.1, 2.3],
[5.8, 2.7, 5.1, 1.9],
[6.8, 3.2, 5.9, 2.3],
[6.7, 3.3, 5.7, 2.5],
[6.7, 3. , 5.2, 2.3],
[6.3, 2.5, 5. , 1.9],
[6.5, 3. , 5.2, 2.],
[6.2, 3.4, 5.4, 2.3],
[5.9, 3. , 5.1, 1.8]]),

'target': array([0, 0,
0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]),

'frame': None,
'target_names': array(['setosa', 'versicolor', 'virginica'], dtype='<U10'),
'DESCR': '.. _iris_dataset:\n\nIris plants dataset\n--------------------\n\n**Data Set␣
→˓Characteristics:**\n\n:Number of Instances: 150 (50 in each of three classes)\n:Number␣

(continues on next page)

126 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

→˓of Attributes: 4 numeric, predictive attributes and the class\n:Attribute Information:\
→˓n - sepal length in cm\n - sepal width in cm\n - petal length in cm\n -␣
→˓petal width in cm\n - class:\n - Iris-Setosa\n - Iris-
→˓Versicolour\n - Iris-Virginica\n\n:Summary Statistics:\n\n==============␣
→˓==== ==== ======= ===== ====================\n Min Max Mean SD ␣
→˓Class Correlation\n============== ==== ==== ======= ===== ====================\nsepal␣
→˓length: 4.3 7.9 5.84 0.83 0.7826\nsepal width: 2.0 4.4 3.05 0.43 -
→˓0.4194\npetal length: 1.0 6.9 3.76 1.76 0.9490 (high!)\npetal width: 0.1␣
→˓ 2.5 1.20 0.76 0.9565 (high!)\n============== ==== ==== ======= =====␣
→˓====================\n\n:Missing Attribute Values: None\n:Class Distribution: 33.3%␣
→˓for each of 3 classes.\n:Creator: R.A. Fisher\n:Donor: Michael Marshall (MARSHALL
→˓%PLU@io.arc.nasa.gov)\n:Date: July, 1988\n\nThe famous Iris database, first used by␣
→˓Sir R.A. Fisher. The dataset is taken\nfrom Fisher\'s paper. Note that it\'s the same␣
→˓as in R, but not as in the UCI\nMachine Learning Repository, which has two wrong data␣
→˓points.\n\nThis is perhaps the best known database to be found in the\npattern␣
→˓recognition literature. Fisher\'s paper is a classic in the field and\nis referenced␣
→˓frequently to this day. (See Duda & Hart, for example.) The\ndata set contains 3␣
→˓classes of 50 instances each, where each class refers to a\ntype of iris plant. One␣
→˓class is linearly separable from the other 2; the\nlatter are NOT linearly separable␣
→˓from each other.\n\n|details-start|\n**References**\n|details-split|\n\n- Fisher, R.A.
→˓"The use of multiple measurements in taxonomic problems"\n Annual Eugenics, 7, Part␣
→˓II, 179-188 (1936); also in "Contributions to\n Mathematical Statistics" (John Wiley,␣
→˓NY, 1950).\n- Duda, R.O., & Hart, P.E. (1973) Pattern Classification and Scene␣
→˓Analysis.\n (Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.\n-␣
→˓Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System\n Structure and␣
→˓Classification Rule for Recognition in Partially Exposed\n Environments". IEEE␣
→˓Transactions on Pattern Analysis and Machine\n Intelligence, Vol. PAMI-2, No. 1, 67-
→˓71.\n- Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE Transactions\n ␣
→˓on Information Theory, May 1972, 431-433.\n- See also: 1988 MLC Proceedings, 54-64. ␣
→˓Cheeseman et al"s AUTOCLASS II\n conceptual clustering system finds 3 classes in the␣
→˓data.\n- Many, many more ...\n\n|details-end|\n',
'feature_names': ['sepal length (cm)',
'sepal width (cm)',
'petal length (cm)',
'petal width (cm)'],
'filename': 'iris.csv',
'data_module': 'sklearn.datasets.data'}

Making it a 2 class problem
X_data = data["data"][:100]
Y_data = data["target"][:100]
len(X_data)

100

Splitting the data into training and testing with 80 and 20%
X_train, X_test, Y_train, Y_test = train_test_split(X_data, Y_data, test_size = 0.2)
print(X_train.shape, X_test.shape)

(80, 4) (20, 4)

1.15. Derivatives and Partial Derivatives 127

ml_notes.akkefa.com, Release 0.0.1

Making their tensors
X_train_tensor = torch.tensor(X_train, dtype=torch.float32).t()
Y_train_tensor = torch.tensor(Y_train, dtype=torch.float32)
X_test_tensor = torch.tensor(X_test, dtype=torch.float32).t()
Y_test_tensor = torch.tensor(Y_test, dtype=torch.float32)
X_train_tensor.shape[1]

80

def init_params(n_x, n_h, n_y):
'''
This function is used to initializw the weights for the NN.
n_x : input units
n_h : hidden units
n_y : output units
It returns a dictionary which contains all the parameters

'''
W1 = torch.rand(n_x, n_h)
b1 = torch.rand(n_h, 1)
W2 = torch.rand(n_y, n_h)
b2 = torch.rand(n_y, 1)

params = {
'W1': W1,
'b1': b1,
'W2': W2,
'b2': b2

}
return params

def compute_cost(y_pred, y_actual):
'''
Uses the binary cross entropy loss to compute the cost

'''
return -(y_pred.log()* y_actual + (1-y_actual)*(1-y_pred).log()).mean()
return -1/len(y_pred) * (y_actual * torch.log(y_pred) + (1 - y_actual) * torch.log(1 -␣

→˓y_pred)).sum()

def forward_propagation(params, x_input):
'''
Performs the forward propagation step. Uses the parameters to predict the output A2

'''
#Extractng the parameters
W1 = params['W1']
b1 = params['b1']
W2 = params['W2']
b2 = params['b2']

Computing the first layer
Z1 = torch.mm(W1.t(), x_input) + b1
A1 = torch.sigmoid(Z1)

(continues on next page)

128 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

Computing the second layer
Z2 = torch.mm(W2, A1) + b2
A2 = torch.sigmoid(Z2)

Returning the data
data = {

'Z1' : Z1,
'A1' : A1,
'Z2' : Z2,
'A2' : A2

}

return A2, data

def back_propagation(params, data, x_input, y_input, learning_rate):
'''
Performs the back propagation step. Computes the gradients and updates the parameters

'''
m = x_input.shape[1]

Extracting the parameters
W1 = params['W1']
W2 = params['W2']
b1 = params['b1']
b2 = params['b2']

Extrcting the required predictions of first and second layers
A1 = data['A1']
A2 = data['A2']

Calculating the Gradients
dZ2 = A2 - y_input
dW2 = 1/m*(torch.mm(dZ2, A1.t()))
db2 = 1/m*(torch.sum(dZ2, keepdims=True, axis=1))
dZ1 = torch.mm(W2.t(), dZ2)*(1-torch.pow(A1,2))
dW1 = 1/m*(torch.mm(dZ1, x_input.t()))
db1 = 1/m*(torch.sum(dZ1, keepdims=True, axis=1))

Updating the parameters
W1 -= learning_rate*dW1
W2 -= learning_rate*dW2
b1 -= learning_rate*db1
b2 -= learning_rate*db2

parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2}

return parameters

1.15. Derivatives and Partial Derivatives 129

ml_notes.akkefa.com, Release 0.0.1

def model(x_input, y_input, learning_rate = 0.01, no_iterations = 20000):
'''
Putting everything together and making the model

'''
n_x = x_input.shape[0]
n_h = 4
n_y = 1
parameters = init_params(n_x, n_h, n_y)
costs, iterations = [], []
for i in range(no_iterations):
A2, data = forward_propagation(parameters, x_input)

cost = compute_cost(A2, y_input)
cost_torch = F.binary_cross_entropy(A2, y_input.view(1, 80))

parameters = back_propagation(parameters, data, x_input, y_input, learning_rate)

if i%(no_iterations/20) == 0:
print(f'Cost at iteration {i} is {cost}')
print(f'Cost_torch at iteration {i} is {cost_torch.item()}')

costs.append(cost)
iterations.append(i)

return parameters, costs, iterations

parameters, costs, iterations = model(X_train_tensor, Y_train_tensor, 1e-4, 20000)
plt.plot(iterations, costs)

Cost at iteration 0 is 1.2233800888061523
Cost_torch at iteration 0 is 1.223380208015442

Cost at iteration 1000 is 1.1450579166412354
Cost_torch at iteration 1000 is 1.1450579166412354

Cost at iteration 2000 is 1.0741550922393799
Cost_torch at iteration 2000 is 1.0741550922393799

Cost at iteration 3000 is 1.0109174251556396
Cost_torch at iteration 3000 is 1.0109174251556396

Cost at iteration 4000 is 0.9553591012954712
Cost_torch at iteration 4000 is 0.9553591012954712

Cost at iteration 5000 is 0.9072657823562622
Cost_torch at iteration 5000 is 0.9072657823562622

Cost at iteration 6000 is 0.8662165403366089
Cost_torch at iteration 6000 is 0.8662165403366089

Cost at iteration 7000 is 0.8316314816474915
Cost_torch at iteration 7000 is 0.8316314816474915

130 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Cost at iteration 8000 is 0.8028279542922974
Cost_torch at iteration 8000 is 0.8028279542922974

Cost at iteration 9000 is 0.7790777087211609
Cost_torch at iteration 9000 is 0.7790778279304504

Cost at iteration 10000 is 0.759656548500061
Cost_torch at iteration 10000 is 0.759656548500061

Cost at iteration 11000 is 0.7438803911209106
Cost_torch at iteration 11000 is 0.7438803911209106

Cost at iteration 12000 is 0.731128990650177
Cost_torch at iteration 12000 is 0.731128990650177

Cost at iteration 13000 is 0.7208572030067444
Cost_torch at iteration 13000 is 0.7208572030067444

Cost at iteration 14000 is 0.7125982642173767
Cost_torch at iteration 14000 is 0.7125982642173767

Cost at iteration 15000 is 0.7059605717658997
Cost_torch at iteration 15000 is 0.7059605717658997

Cost at iteration 16000 is 0.7006201148033142
Cost_torch at iteration 16000 is 0.7006201148033142

Cost at iteration 17000 is 0.696312427520752
Cost_torch at iteration 17000 is 0.696312427520752

Cost at iteration 18000 is 0.6928235292434692
Cost_torch at iteration 18000 is 0.6928235292434692

Cost at iteration 19000 is 0.6899821162223816
Cost_torch at iteration 19000 is 0.6899821162223816

[<matplotlib.lines.Line2D at 0x7f668eec4110>]

1.15. Derivatives and Partial Derivatives 131

ml_notes.akkefa.com, Release 0.0.1

1.16 Algebra Introduction

This section introduces the basic concepts of algebra, including variables, constants, and functions

1.16.1 Functions

A function is a rule that takes one or more inputs and produces a single output. For example, the function 𝑓(𝑥) = 𝑥+1
takes a single input 𝑥, adds one to it, and produces a single output. In algebra, functions are written using symbols and
formulas. For example, the function 𝑓(𝑥) = 𝑥 + 1 can be written as 𝑓 : 𝑥→ 𝑥 + 1. The input to a function is called
the argument or input variable. The output is called the value or output variable.

Functions are often written using the following notation:

𝑦 = 𝑓(𝑥)

The notation above is read as “𝑦 equals 𝑓 of 𝑥” or “𝑦 is a function of 𝑥”. The notation above is useful because it allows
us to define a function without specifying its name. For example, we can define a function 𝑓 as follows:

𝑓(𝑥) = 𝑥2

132 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

We can then use the function 𝑓 to compute the square of any number. For example, 𝑓(2) = 22 = 4 and 𝑓(3) = 32 = 9.

f(𝑥) =
√
𝑥 + 6

f(6) =
√

10 + 6

f(6) = 4.0

𝑓(𝑥) =
𝑥− 3

𝑥 + 2

𝑓(3) =
3− 3

3 + 2
=

0

5
= 0

Domain and Range of a Function

The domain of a function is the set of all possible inputs to the function. The range of a function is the set of all
possible outputs of the function. For example, the function 𝑓(𝑥) = 𝑥2 has a domain of all real numbers and a range
of all non-negative real numbers. The domain of a function is often written as 𝐷(𝑓) and the range is often written as
𝑅(𝑓).

𝑦 = 𝑓(𝑥)

𝑦 = 𝑥2

import seaborn as sb

func = lambda x: x ** 2

x = [-1,-2,-3, -4, 1, 2, 3, 4]
y = [func(i) for i in x]

sb.lineplot(x=x, y=y)

<Axes: >

1.16. Algebra Introduction 133

ml_notes.akkefa.com, Release 0.0.1

Piecewise Functions

A piecewise function is a function that is defined by multiple sub-functions, each sub-function applying to a different
interval of the main function’s domain. For example, the function 𝑓(𝑥) = |𝑥| is defined by two sub-functions:

𝑓(𝑥) =

{︃
𝑥 if 𝑥 ≥ 0

−𝑥 if 𝑥 < 0

1.16.2 Expoents

An exponent is a number that indicates how many times a base number is multiplied by itself. For example, 23 is the
same as 2× 2× 2 and 24 is the same as 2× 2× 2× 2. The number 2 is called the base and the number 3 is called the
exponent. Exponents are often written using the following notation:

23 = 2× 2× 2 = 8

The notation above is read as “two to the power of three” or “two cubed”.

134 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Negative Exponents

A negative exponent indicates that the base number should be divided by itself a certain number of times. For example,
2−3 is the same as 1

23 and 2−4 is the same as 1
24 . The number 2 is called the base and the number −3 is called the

exponent. Negative exponents are often written using the following notation:

2−3 =
1

23
=

1

8

The notation above is read as “two to the power of negative three” or “two to the power of minus three”.

Fractional Exponents

A fractional exponent indicates that the base number should be multiplied by itself a certain number of times. For
example, 2

1
2 is the same as

√
2 and 2

1
3 is the same as 3

√
2. The number 2 is called the base and the number 1

2 is called
the exponent. Fractional exponents are often written using the following notation:

2
1
2 =
√

2 = 1.414213562373095

The notation above is read as “two to the power of one half” or “two to the power of one over two”.

1.16.3 Logarithms

A logarithm is the inverse of an exponent. For example, the logarithm of 23 is 3. The logarithm of a number 𝑥 to the
base 𝑏 is written as log𝑏(𝑥). For example, log2(8) = 3 because 23 = 8.

Common Logarithms

The common logarithm of a number 𝑥 is the logarithm of 𝑥 to the base 10. The common logarithm of 𝑥 is written as
log(𝑥). For example, log(100) = 2 because 102 = 100.

Natural Logarithms

The natural logarithm of a number 𝑥 is the logarithm of 𝑥 to the base 𝑒. The natural logarithm of 𝑥 is written as ln(𝑥).
For example, ln(100) = 4.60517 because 𝑒4.60517 = 100.

1.16.4 Polynomials

A polynomial is an expression consisting of variables and coefficients, that involves only the operations of addition,
subtraction, multiplication, and non-negative integer exponents.

For example, 𝑥2 + 2𝑥 + 1 is a polynomial because it consists of the variables 𝑥 and the coefficients 1 and 2.

The degree of a polynomial is the highest degree of its terms. For example, the polynomial 𝑥2 + 2𝑥 + 1 has a degree
of 2 because its highest degree term is 𝑥2.

1.16. Algebra Introduction 135

ml_notes.akkefa.com, Release 0.0.1

1.16.5 Proof by Induction

A proof by induction consists of two cases. The first, the base case, proves the statement for n = 0 without assuming
any knowledge of other cases. The second case, the induction step, proves that if the statement holds for any given case
n = k, then it must also hold for the next case n = k + 1. These two steps establish that the statement holds for every
natural number n.

1.17 What is Machine Learning?

Statistical learning is about using many tools to understand data. These tools can be grouped into two types: super-
vised and unsupervised. Supervised learning means you create a model to predict or estimate an outcome based on
inputs. This kind of problem is found in many areas like business, medicine, space science, and government policies.
Unsupervised learning means you don’t have a specific outcome you’re looking for, but you still try to find patterns or
relationships in the data.

Best book on Machine Learning

My notes are based on this book reference. https://www.statlearning.com/

1.17.1 Simple Linear Regression

Simple linear regression is a method used in statistics to model the relationship between two variables by fitting a linear
equation to observed data. One variable is considered to be an explanatory variable (independent variable), and the
other is considered to be a dependent variable. The linear regression aims to draw a straight line that best fits the data
by minimizing the sum of the squares of the vertical distances of the points from the line.

136 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Formula

𝑌 ≈ 𝛽0 + 𝛽1𝑋

The equation of a simple linear regression line is:

where:

• y is the dependent variable,

• x is the independent variable,

• 𝛽0 is the y-intercept of the regression line,

• 𝛽1 is the slope of the regression line, which indicates the change in y for a one-unit change in x,

• 𝜖 is the error term (the difference between the observed values and the values predicted by the model).

The goal is to estimate the coefficients 𝛽0 and 𝛽1 that minimize the sum of squared residuals (the differences between
the observed values and the values predicted by the model).

For example, X may represent TV advertising and Y may represent sales. Then we can regress sales onto TV by ftting
the model

sales ≈ 𝛽0 + 𝛽1 × TV

𝛽0 and 𝛽1 are two unknown constants that represent he intercept and slope terms in the linear model. Together, 𝛽0 and
𝛽1 are known as the model coefficients or parameters. Once we have used our raining data to produce estimates 𝛽0

and 𝛽1 for the model coefficients, we can predict future sales on the basis of a particular value of TV advertising sy
computing

𝑦 = 𝛽0 + 𝛽1𝑥

where 𝑦 indicates a prediction of 𝑌 on the basis of 𝑋 = 𝑥. Here we use a hat symbol, ‘ , to denote the estimated value
for an unknown parameter or coefficient, or to denote the predicted value of the response.

Estimating the Coefcients

In practice, 𝛽0 and 𝛽1 are unknown. So before we can use to make predictions, we must use data to estimate the
coefficients. Let $(𝑥1, 𝑦1) , (𝑥2, 𝑦2) , . . . , (𝑥𝑛, 𝑦𝑛)$

represent 𝑛 observation pairs, each of which consists of a measurement of 𝑋 and a measurement of 𝑌 . In the Advertis-
ing example, this data set consists of the TV advertising budget and product sales in 𝑛 = 200 different markets. (Recall
that the data are displayed in Figure 2.1.) Our goal is to obtain coefficient estimates 𝛽0 and 𝛽1 such that the linear
model (3.1) fits the available data well-that is, so that 𝑦𝑖 ≈ 𝛽0 + 𝛽1𝑥𝑖 for 𝑖 = 1, . . . , 𝑛. In other words, we want to find
an intercept 𝛽0 and a slope 𝛽1 such that the resulting line is as close as possible to the 𝑛 = 200 data points. There are
a number of ways of measuring closeness. However, by far the most common approach involves minimizing the least
squares criterion, and we take that approach in this chapter. Alternative approaches will be considered in Chapter 6.

Let 𝑦𝑖 = 𝛽0 +𝛽1𝑥𝑖 be the prediction for 𝑌 based on the 𝑖 th value of 𝑋 . Then 𝑒𝑖 = 𝑦𝑖−𝑦𝑖 represents the 𝑖 th residual -
this is the difference between the 𝑖 th observed response value and the 𝑖 th response value that is predicted by our linear
model. We define the residual sum of squares (RSS) as $RSS = 𝑒21 + 𝑒22 + · · ·+ 𝑒2𝑛$

1.17. What is Machine Learning? 137

ml_notes.akkefa.com, Release 0.0.1

Example 1: Height and Weight

Imagine we have data on the heights and weights of a group of people. We could use simple linear regression to predict
the weight of someone based on their height. In this example:

• The independent variable 𝑥 would be height (e.g., in centimeters).

• The dependent variable 𝑦 would be weight (e.g., in kilograms).

• By analyzing the data, we calculate the values of 𝑏0 (the intercept) and 𝑏1 (the slope).

• Suppose we find the regression equation to be 𝑦 = 50 + 0.5𝑥. This means that for every additional centimeter
in height, we expect the weight to increase by 0.5 kilograms, starting from 50 kilograms.

Example 2: Hours spent studying vs. Exam score

First, we can visualize the data to understand its distribution and the relationship between x and y

import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

Sample data: Hours spent studying vs. Exam score
data = {

'Hours_Studied': [1, 2, 3, 4, 5],
'Exam_Score': [2, 3, 5, 6, 8]

}
df = pd.DataFrame(data)

Plotting the data
sns.scatterplot(data=df, x='Hours_Studied', y='Exam_Score')
plt.xlabel('Hours Studied')
plt.ylabel('Exam Score')
plt.title('Study Hours vs Exam Score')
plt.show()

138 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

beta_1, beta_0 = np.polyfit(df.Hours_Studied, df.Exam_Score, 1)
Print the computed parameters
print(f"Slope: {beta_1}, Intercept: {beta_0}")

regression_line = beta_0 + beta_1 * df.Hours_Studied

Plot original data points
sns.scatterplot(x=df.Hours_Studied, y=df.Exam_Score)

Plot regression line
plt.plot(df.Hours_Studied, regression_line, color='red')

plt.xlabel('Years of Experience')
plt.ylabel('Salary')
plt.show()

Slope: 1.4999999999999998, Intercept: 0.3000000000000001

1.17. What is Machine Learning? 139

ml_notes.akkefa.com, Release 0.0.1

import torch
import torch.nn as nn
import torch.optim as optim

Preparing the data
X = torch.tensor(df['Hours_Studied'].values, dtype=torch.float32).view(-1, 1)
Y = torch.tensor(df['Exam_Score'].values, dtype=torch.float32).view(-1, 1)

Defining the linear regression model
model = nn.Linear(in_features=1, out_features=1)

Loss function and optimizer
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)

Training the model
epochs = 500
for epoch in range(epochs):

Zero the gradients
optimizer.zero_grad()

Forward pass
outputs = model(X)
loss = criterion(outputs, Y)

Backward and optimize
(continues on next page)

140 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

loss.backward()
optimizer.step()

if (epoch+1) % 100 == 0:
print(f'Epoch [{epoch+1}/{epochs}], Loss: {loss.item()}')

Coefficients
print('Estimated coefficients:')
print('Weight:', model.weight.item())
print('Bias:', model.bias.item())

Epoch [100/500], Loss: 0.06318604946136475
Epoch [200/500], Loss: 0.06161843612790108
Epoch [300/500], Loss: 0.06082212179899216
Epoch [400/500], Loss: 0.06041758134961128
Epoch [500/500], Loss: 0.06021212413907051
Estimated coefficients:
Weight: 1.4905762672424316
Bias: 0.33402296900749207

Optmization

In simple linear regression, the Least Squares Method is used to find the values of the coefficients 𝛽0 and 𝛽1 that
minimize the sum of the squared differences between the observed values and the values predicted by the linear model.
The sum of squared differences, also known as the sum of squared residuals (SSR), is given by:

𝑆𝑆𝑅 =

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2

where 𝑦𝑖 are the observed values, 𝑦𝑖 are the predicted values, and 𝑛 is the number of observations. The predicted values
are calculated using the linear model equation:

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖

To find the values of 𝛽0 and 𝛽1 that minimize the SSR, we take the partial derivatives of the SSR with respect to 𝛽0

and 𝛽1, set them equal to zero, and solve the resulting system of equations. This process is called the method of least
squares.

Derivatives Calculation

1. Partial Derivative with Respect to 𝛽0:

𝜕𝑆𝑆𝑅

𝜕𝛽0
=

𝜕

𝜕𝛽0

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖)
2

Using the chain rule, this derivative simplifies to:

−2

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖)

2. Partial Derivative with Respect to 𝛽1:

1.17. What is Machine Learning? 141

ml_notes.akkefa.com, Release 0.0.1

𝜕𝑆𝑆𝑅

𝜕𝛽1
=

𝜕

𝜕𝛽1

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖)
2

This derivative simplifies to:

−2

𝑛∑︁
𝑖=1

𝑥𝑖(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖)

Solving for 𝛽0 and 𝛽1

To find the values of 𝛽0 and 𝛽1 that minimize the SSR, we set each derivative equal to zero:

−2
∑︀𝑛

𝑖=1(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖) = 0

−2
∑︀𝑛

𝑖=1 𝑥𝑖(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖) = 0

These can be simplified and rearranged to form a system of linear equations:∑︀𝑛
𝑖=1 𝑦𝑖 = 𝑛𝛽0 + 𝛽1

∑︀𝑛
𝑖=1 𝑥𝑖∑︀𝑛

𝑖=1 𝑥𝑖𝑦𝑖 = 𝛽0

∑︀𝑛
𝑖=1 𝑥𝑖 + 𝛽1

∑︀𝑛
𝑖=1 𝑥

2
𝑖

Solving this system of equations gives the values of 𝛽0 and 𝛽1:

𝛽1 =
𝑛
∑︀𝑛

𝑖=1 𝑥𝑖𝑦𝑖 − (
∑︀𝑛

𝑖=1 𝑥𝑖)(
∑︀𝑛

𝑖=1 𝑦𝑖)

𝑛
∑︀𝑛

𝑖=1 𝑥
2
𝑖 − (

∑︀𝑛
𝑖=1 𝑥𝑖)2

𝛽0 =

∑︀𝑛
𝑖=1 𝑦𝑖 − 𝛽1

∑︀𝑛
𝑖=1 𝑥𝑖

𝑛

Interpretation

• 𝛽1 (the slope) represents the estimated change in the dependent variable (𝑦) for a one-unit change in the inde-
pendent variable (𝑥).

• 𝛽0 (the intercept) represents the estimated value of 𝑦 when 𝑥 = 0.

This method ensures that the line of best fit is determined by minimizing the difference between the observed values
and the values predicted by the linear model, specifically by minimizing the sum of the squares of these differences.

Evaluating the Model

In linear regression, the evaluation of the model’s performance often involves determining how well the model fits
the observed data. Two key metrics used in this context are the Residual Sum of Squares (RSS) and the Total Sum of
Squares (TSS). Understanding these metrics allows us to assess the proportion of the variance in the dependent variable
that is predictable from the independent variable.

Residual Sum of Squares (RSS)

The Residual Sum of Squares (RSS), also known as the Sum of Squared Residuals (SSR), measures the amount of
variance in the dependent variable that is not explained by the regression model. In simpler terms, it quantifies how
much the data points deviate from the regression line. Mathematically, RSS is defined as:

𝑅𝑆𝑆 =

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2

where:

142 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

• 𝑦𝑖 is the actual value of the dependent variable for the 𝑖th observation,

• 𝑦𝑖 is the predicted value of the dependent variable for the 𝑖th observation based on the regression line,

• 𝑛 is the total number of observations.

A smaller RSS indicates a model that closely fits the data.

Total Sum of Squares (TSS)

The Total Sum of Squares (TSS) measures the total variance in the dependent variable. It represents how much the
data points deviate from the mean of the dependent variable. TSS is an indicator of the total variability within the data
set. It is defined as:

𝑇𝑆𝑆 =

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦)2

where:

• 𝑦𝑖 is the actual value of the dependent variable for the 𝑖th observation,

• 𝑦 is the mean value of the dependent variable across all observations.

TSS is used as a baseline to compare the performance of the regression model.

The relationship between RSS and TSS is crucial for understanding how well the linear regression model fits the data.
To quantify this, one common metric is the𝑅2 statistic, also known as the coefficient of determination. 𝑅2 measures the
proportion of the variance in the dependent variable that is predictable from the independent variable(s). It is calculated
as:

𝑅2 = 1− 𝑅𝑆𝑆

𝑇𝑆𝑆

• An 𝑅2 value of 1 indicates that the regression model perfectly fits the data (with RSS = 0).

• An 𝑅2 value of 0 suggests that the model does not explain any of the variability in the dependent variable around
its mean (with RSS = TSS).

While 𝑅2 is a useful indicator of model fit, it’s important to consider other metrics and tests as well, especially when
dealing with multiple regression models or models that might be overfitting the data.

Coefficient Significance

The significance of a coefficient in a linear regression model indicates whether a variable has a statistically significant
relationship with the dependent variable. It’s assessed using the t-test, which evaluates the null hypothesis that the
coefficient is equal to zero (no effect) against the alternative hypothesis that the coefficient is not equal to zero (a
significant effect).

T-statistic is calculated as:

𝑡 =
𝛽𝑗

𝑆𝐸(𝛽𝑗)

where 𝛽𝑗 is the estimated coefficient for the predictor variable 𝑗, and 𝑆𝐸(𝛽𝑗) is the standard error of the estimated
coefficient.

The t-statistic is compared against a critical value from the t-distribution with 𝑛− 𝑝− 1 degrees of freedom, where 𝑛
is the number of observations and 𝑝 is the number of predictors. If the absolute value of the t-statistic is greater than
the critical value, the null hypothesis is rejected, indicating that the coefficient is statistically significant.

1.17. What is Machine Learning? 143

ml_notes.akkefa.com, Release 0.0.1

Example: Imagine a dataset where we’re predicting house prices based on various features. One of the features is the
number of bedrooms. Suppose the estimated coefficient for the number of bedrooms is 20,000 (indicating that each
additional bedroom is associated with an average increase of $20,000 in house price), with a standard error of 5,000.

𝑡 =
20, 000

5, 000
= 4

Assuming a critical value of 2.576 for a 99% confidence level, the t-statistic is greater than the critical value, suggesting
the number of bedrooms is a significant predictor of house price.

Test Error

Test error, also known as the mean squared error (MSE) on the test set, measures the model’s performance on unseen
data. It’s calculated by comparing the model’s predictions on the test set with the actual values.

𝑀𝑆𝐸 =
1

𝑛test

𝑛test∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2

where 𝑛test is the number of observations in the test set, 𝑦𝑖 are the actual values, and 𝑦𝑖 are the predicted values by the
model.

The MSE provides a numeric measure of the average squared deviation between the observed actual outcomes and the
outcomes predicted by the model. A lower MSE indicates a better fit of the model to the data.

Example: Continuing with the house price prediction model, suppose we have a test set of 100
houses. After predicting the prices with our model, we calculate the differences between the actual
prices and the predicted prices, square those differences, and average them. If the resulting MSE is
10, 000, 000, 𝑡ℎ𝑖𝑠𝑚𝑒𝑎𝑛𝑠, 𝑜𝑛𝑎𝑣𝑒𝑟𝑎𝑔𝑒, 𝑡ℎ𝑒𝑚𝑜𝑑𝑒𝑙′𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝑑𝑒𝑣𝑖𝑎𝑡𝑒𝑓𝑟𝑜𝑚𝑡ℎ𝑒𝑎𝑐𝑡𝑢𝑎𝑙𝑝𝑟𝑖𝑐𝑒𝑠𝑏𝑦𝑎𝑏𝑜𝑢𝑡3,162 (the
square root of MSE) per house.

Both the significance of coefficients and test error provide valuable insights into a linear regression model’s effectiveness
and reliability. Coefficient significance helps identify which variables have a meaningful impact on the dependent
variable, while test error quantifies the model’s predictive accuracy on new, unseen data.

1.17.2 Multi-Linear Regression

Multi-linear regression is an extension of simple linear regression to predict an outcome based on multiple predictors or
independent variables. The goal of multi-linear regression is to model the relationship between two or more predictors
and a response variable by fitting a linear equation to observed data. The formula for a multi-linear regression model
can be expressed as:

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ... + 𝛽𝑛𝑋𝑛 + 𝜖

Where:

• 𝑌 is the dependent variable (the variable being predicted),

• 𝑋1, 𝑋2, ..., 𝑋𝑛 are the independent variables (predictors),

• 𝛽0 is the intercept,

• 𝛽1, 𝛽2, ..., 𝛽𝑛 are the coefficients of the predictors which represent the weight of each predictor in the equation,

• 𝜖 is the error term, the part of 𝑌 the regression model is unable to explain.

144 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Multi-Linear Regression in PyTorch

PyTorch is a popular open-source machine learning library for Python, primarily used for applications such as computer
vision and natural language processing. It’s also extensively used for deep learning applications, but you can certainly
use it for simple multi-linear regression.

Here’s a basic example of how to implement multi-linear regression in PyTorch:

1. Data Preparation: First, we need to prepare our dataset. This involves splitting our data into predictors (X) and
a target variable (Y).

2. Model Creation: We’ll create a linear model using PyTorch’s nn.Linear module to represent our multi-linear
regression model.

3. Loss Function: The loss function will measure how well the model predicts the target variable. For regression
problems, Mean Squared Error (MSE) is commonly used.

4. Optimizer: This is what we’ll use to update the model parameters (𝛽 values) to minimize the loss function. A
common optimizer is Stochastic Gradient Descent (SGD).

Example Code

This code snippet demonstrates a simple example of performing multi-linear regression using PyTorch. Here, X is
our matrix of predictors, and Y is the target variable. We define a model with nn.Linear specifying 3 input features
and 1 output feature. The training loop updates our model’s weights using the specified optimizer and loss function.
After training, we print the loss at every 100 epochs to observe how it decreases, indicating that our model is learning.
Finally, we print out the learned parameters, which are the weights and bias from our model.

Remember, this is a very basic example. In practice, you’d have a much larger dataset, you would divide your data into
training and test datasets, and you might need to normalize your data for better performance.

import torch
import torch.nn as nn
import torch.optim as optim

Example dataset with 3 predictors
X = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]], dtype=torch.float32)
Y = torch.tensor([[14], [32], [50], [68]], dtype=torch.float32) # target variable

Define the model
model = nn.Linear(in_features=3, out_features=1)

Loss function
criterion = nn.MSELoss()

Optimizer
optimizer = optim.SGD(model.parameters(), lr=0.01)

Training loop
epochs = 100
for epoch in range(epochs):

Forward pass: Compute predicted y by passing x to the model
Y_pred = model(X)

Compute loss
loss = criterion(Y_pred, Y)

(continues on next page)

1.17. What is Machine Learning? 145

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

Zero gradients, perform a backward pass, and update the weights.
optimizer.zero_grad()
loss.backward()
optimizer.step()

if (epoch+1) % 50 == 0:
print(f'Epoch {epoch+1}, Loss: {loss.item()}')

Display learned parameters
for name, param in model.named_parameters():

if param.requires_grad:
print(name, param.data)

Epoch 50, Loss: inf
Epoch 100, Loss: inf
weight tensor([[-4.2858e+35, -4.8812e+35, -5.4765e+35]])
bias tensor([-5.9534e+34])

Bias-Variance Trade-Off

The Bias-Variance Trade-Off is a fundamental concept in supervised machine learning that describes the trade-off
between the ability of a model to approximate the true underlying function (bias) and its sensitivity to fluctuations
in the training data (variance). Understanding this trade-off is crucial for building models that generalize well from
training data to unseen data.

Bias

Bias refers to the error due to overly simplistic assumptions in the learning algorithm. High bias can cause the model
to miss relevant relations between features and target outputs (underfitting), meaning the model is not complex enough
to capture the underlying patterns in the data.

Variance

Variance refers to the error due to too much complexity in the learning algorithm. High variance can cause the model
to model the random noise in the training data (overfitting), meaning the model is too complex and captures noise as if
it were a pattern in the data.

Trade-Off

The trade-off is that algorithms with high bias typically have lower variance, and vice versa. A model with high bias
might overly simplify the model, making it perform poorly on both training and unseen data. A model with high
variance might perform exceptionally well on training data but poorly on unseen data because it’s too tailored to the
training data, including its noise.

Ideally, you want to find a sweet spot that minimizes both bias and variance, providing good generalization to new data.

146 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Image Examples

Let’s illustrate this with some image examples.

1. High Bias (Underfitting): Imagine a scenario where you’re trying to fit a line (linear regression) through data
points that clearly form a curved pattern (quadratic). The linear model is too simple to capture the curve, resulting
in high bias.

2. High Variance (Overfitting): Now, imagine fitting a high-degree polynomial through those same points. The
model fits the training data points perfectly, including the noise, resulting in a wavy line that doesn’t capture the
true underlying pattern.

3. Bias-Variance Tradeoff : The optimal model would be one that correctly assumes a quadratic relationship, fitting
a curve that captures the underlying pattern without being affected by the noise.

Let’s generate these examples visually.

1. High Bias Example: A straight line attempting to fit through quadratic data points.

2. High Variance Example: A high-degree polynomial line that passes through every point, including noise.

3. Ideal Model: A quadratic curve that fits well with the underlying pattern of the data, avoiding overfitting and
underfitting.

I’ll create an image to represent the concept of the Bias-Variance Tradeoff visually.

The image above visually represents the Bias-Variance Tradeoff in machine learning. It consists of three panels, each
illustrating a key concept:

1. High Bias: The first panel shows a simple straight line that does not capture the essence of the underlying curve
formed by the data points. This scenario is typical of models with high bias, where the simplicity of the model
prevents it from capturing the true relationship between variables, leading to underfitting.

2. High Variance: The second panel depicts a highly complex, wavy line that passes through every single data
point, including noise. This is characteristic of models with high variance, where the complexity of the model
causes it to capture noise as if it were a significant pattern, leading to overfitting.

3. Ideal Model: The third panel illustrates an optimal curve that smoothly captures the general pattern of the data
points without fitting to the noise. This represents the desirable balance in the Bias-Variance Tradeoff, where the
model is complex enough to capture the underlying pattern but not so complex that it fits the noise in the data.

1.17. What is Machine Learning? 147

ml_notes.akkefa.com, Release 0.0.1

This visualization aids in understanding the trade-off between bias and variance, highlighting the importance of finding
a model that achieves a good balance for optimal performance on unseen data.

Types of variables in multi linear regression

148 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

1.18 Logistic Regression

Logistic regression is a statistical method for analyzing a dataset in which there are one or more independent variables
that determine an outcome. The outcome is measured with a dichotomous variable (in which there are only two possible
outcomes). It’s used extensively for binary classification problems, such as spam detection (spam or not spam), loan
default (default or not), disease diagnosis (positive or negative), etc. Logistic regression predicts the probability that a
given input belongs to a certain category.

1.18. Logistic Regression 149

ml_notes.akkefa.com, Release 0.0.1

1.18.1 Sigmoid / Logistic Function :

The core of logistic regression is the sigmoid function, which maps any real-valued number into a value between 0 and
1, making it suitable for probability estimation. The sigmoid function is defined as 𝜎(𝑧) = 1

1+𝑒−𝑧 , where 𝑧 is the input
to the function, often 𝑧 = 𝑤𝑇𝑥 + 𝑏, with 𝑤 being the weights, 𝑥 the input features, and 𝑏 the bias.

150 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

1.18.2 Cost / loss Function:

MLE in Binary Classification

Maximum Likelihood Estimation (MLE) is a central concept in statistical modeling, including binary classification
tasks. Binary classification involves predicting whether an instance belongs to one of two classes (e.g., spam or not
spam, diseased or healthy) based on certain input features.

In binary classification, you often model the probability of the positive class (𝑦 = 1) as a function of input features (𝑋)
using a logistic function, leading to logistic regression. The probability that a given instance belongs to the positive
class can be expressed as:

𝑃 (𝑌 = 1|𝑋; 𝜃) =
1

1 + 𝑒−(𝛽0+𝛽1𝑋1+...+𝛽𝑛𝑋𝑛)

Here, 𝜃 represents the model parameters (𝛽0, 𝛽1, ..., 𝛽𝑛), and 𝑋1, ..., 𝑋𝑛 are the input features.

The likelihood function 𝐿(𝜃) in the context of binary classification is the product of the probabilities of each observed
label, given the input features and the model parameters. For a dataset with 𝑚 instances, where 𝑦𝑖 is the label of the
𝑖-th instance, and 𝑝𝑖 is the predicted probability of the 𝑖-th instance being in the positive class, the likelihood is:

𝐿(𝜃) =

𝑚∏︁
𝑖=1

𝑝𝑦𝑖

𝑖 (1− 𝑝𝑖)
1−𝑦𝑖

This product is maximized when the model parameters (𝜃) are such that the predicted probabilities (𝑝𝑖) are close to 1
for actual positive instances and close to 0 for actual negative instances.

Log-Likelihood:

To simplify calculations and handle numerical stability, we use the log-likelihood, which converts the product into a
sum:

ℓ(𝜃) =

𝑚∑︁
𝑖=1

[𝑦𝑖 log(𝑝𝑖) + (1− 𝑦𝑖) log(1− 𝑝𝑖)]

The goal is to find the parameters (𝜃) that maximize this log-likelihood.

1.18. Logistic Regression 151

ml_notes.akkefa.com, Release 0.0.1

Threshold Decision:

The probability outcome from the sigmoid function is converted into a binary outcome via a threshold decision rule,
usually 0.5 (if the sigmoid output is greater than or equal to 0.5, the outcome is classified as 1, otherwise as 0).

152 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Performance Metrics:

Here are some performance metrics that can be used to evaluate the performance of a binary classifier:

• Accuracy

• Precision

• Recall

• F1 score

• ROC curve

• Confusion matrix

• AUC (Area Under the Curve)

1.18. Logistic Regression 153

ml_notes.akkefa.com, Release 0.0.1

Logistic Regression in PyTorch:

Here’s a simple example of how to implement logistic regression in PyTorch. PyTorch is a deep learning framework that
provides a lot of flexibility and capabilities, including automatic differentiation which is handy for logistic regression.

Step 1: Import Libraries

import torch
import torch.nn as nn
import torch.optim as optim

Step 2: Create Dataset

For simplicity, let’s assume a binary classification task with some synthetic data.

Features [sample size, number of features]
X = torch.tensor([[1, 2], [4, 5], [7, 8], [9, 10]], dtype=torch.float32)
Labels [sample size, 1]
y = torch.tensor([[0], [1], [1], [0]], dtype=torch.float32)

154 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Step 3: Define the Model

class LogisticRegressionModel(nn.Module):
def __init__(self, input_size, num_classes):

super(LogisticRegressionModel, self).__init__()
self.linear = nn.Linear(input_size, num_classes)

def forward(self, x):
out = torch.sigmoid(self.linear(x))
return out

Step 4: Instantiate Model, Loss, and Optimizer

input_size = 2
num_classes = 1
model = LogisticRegressionModel(input_size, num_classes)

criterion = nn.BCELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)

Step 5: Train the Model

num_epochs = 100
for epoch in range(num_epochs):

Forward pass
outputs = model(X)
loss = criterion(outputs, y)

Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()

if (epoch+1) % 10 == 0:
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')

This code snippet demonstrates the essential parts of implementing logistic regression in PyTorch, including model
definition, data preparation, loss computation, and the training loop. After training, the model’s weights are adjusted to
minimize the loss, making the model capable of predicting the probability that a new, unseen input belongs to a certain
category.

1.18. Logistic Regression 155

ml_notes.akkefa.com, Release 0.0.1

1.19 Non Parametric Models

1.19.1 KNN (K-Nearest Neighbors)

The k-Nearest Neighbors (k-NN) algorithm is a type of supervised machine learning algorithm used for both classifica-
tion and regression tasks. However, it’s more commonly used for classification purposes. The “k” in k-NN represents a
number specified by the user, and it refers to the number of nearest neighbors in the data that the algorithm will consider
to make a prediction for a new data point.

How It Works

1. Choose the number of k and a distance metric: First, you decide on the number of neighbors, “k”, and the
method for measuring distance between data points (common metrics include Euclidean, Manhattan, and Ham-
ming distance).

2. Find the k-nearest neighbors: For a given data point that you want to classify or predict its value, the algorithm
identifies the k nearest data points in the training dataset based on the distance metric.

3. Make predictions:

• For classification, the algorithm assigns the class to the new data point based on the majority vote of its k
nearest neighbors.

• For regression, it predicts the value for the new point based on the average (or another aggregate measure)
of the values of its k nearest neighbors.

Example

Imagine you have a dataset of fruits, where each fruit is described by two features: weight and color (let’s simplify
color to a numerical value for the purpose of this example, where 1 = green, 2 = yellow, 3 = red), and you’re trying to
classify them as either “Apple” or “Banana”.

Now, you have a new fruit that you want to classify, and this fruit weighs 150 grams and has a color value of 1 (green).

If you choose k=3 (looking at the three nearest neighbors), and the three closest fruits in your dataset to this new fruit
are:

• Fruit 1: 145 grams, color 1, labeled “Apple”

• Fruit 2: 160 grams, color 2, labeled “Apple”

• Fruit 3: 155 grams, color 1, labeled “Banana”

Based on the majority vote among the nearest neighbors, the algorithm would classify the new fruit as an “Apple”
because two out of three nearest neighbors are labeled as “Apple”.

This example simplifies the concept to make it easier to understand. In practice, the k-NN algorithm can handle datasets
with many more features and more complex decision boundaries. The key takeaway is that the k-NN algorithm relies
on the similarity of the nearest observations in the feature space to make predictions.

156 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

1.20 Decision Tree

Decision trees are a type of supervised learning algorithm used for both classification and regression tasks, though
they are more commonly used for classification. They are called “decision trees” because the model uses a tree-like
structure of decisions and their possible consequences, including chance event outcomes, resource costs, and utility.

1.20.1 How Decision Trees Work

The algorithm divides the data into two or more homogeneous sets based on the most significant attributes making
the groups as distinct as possible. It uses a method called “recursive partitioning” or “splitting” to do this, which
starts at the top of the tree (the “root”) and splits the data into subsets by making decisions based on feature values.
This process is repeated on each derived subset in a recursive manner called recursive partitioning. The recursion is
completed when the algorithm cannot make any further splits or when it reaches a predefined condition set by the user,
such as a maximum tree depth or a minimum number of samples per leaf.

1.20. Decision Tree 157

ml_notes.akkefa.com, Release 0.0.1

Components of Decision Trees

• Root Node: Represents the entire dataset, which gets divided into two or more homogeneous sets.

• Splitting: Process of dividing a node into two or more sub-nodes based on certain conditions.

• Decision Node: After splitting, the sub-nodes become decision nodes, where further splits can occur.

• Leaf/Terminal Node: Nodes that do not split further, representing the outcome or decision.

• Pruning: Reducing the size of decision trees by removing parts of the tree that do not provide additional power
to classify instances. This is done to make the tree simpler and to avoid overfitting.

158 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Criteria for Splitting

Decision trees use various metrics to decide how to split the data at each step:

• For classification tasks, commonly used metrics are Gini impurity, Entropy, and Classification Error.

• For regression tasks, variance reduction is often used.

Example

Imagine you want to decide on the activity for your weekend. The decision could depend on multiple factors such as
the weather and whether you have company. A decision tree for this scenario might look something like this:

• The root node starts with the question: “Is it raining?”

– If “Yes”, the tree might direct you to a decision “Stay in and read”.

– If “No”, it then asks, “Do you have company?”

∗ If “Yes”, the decision might be “Go hiking”.

∗ If “No”, the decision could be “Visit a cafe”.

This example simplifies the decision tree concept. In real-world data science tasks, decision trees consider many more
variables and outcomes, and the decisions are based on quantitative data from the features of the dataset.

Advantages and Disadvantages

Advantages:

• Easy to understand and interpret.

• Requires little data preparation.

• Can handle both numerical and categorical data.

• Can handle multi-output problems.

Disadvantages:

• Prone to overfitting, especially with complex trees.

• Can be unstable because small variations in the data might result in a completely different tree being generated.

• Decision boundaries are linear, which may not accurately represent the data’s actual structure.

To combat overfitting, techniques like pruning (reducing the size of the tree), setting a maximum depth for the tree, and
ensemble methods like Random Forests are often used.

1.20.2 Decision Tree Regressor

A Decision Tree Regressor is a type of machine learning model used for predicting continuous values, unlike its coun-
terpart, the Decision Tree Classifier, which predicts categorical outcomes. It works by breaking down a dataset into
smaller subsets while simultaneously developing an associated decision tree. The final result is a tree with decision
nodes and leaf nodes.

The Decision Tree Regressor uses the Mean Squared Error (MSE) as a measure to decide on the best split at each
decision node. MSE is a popular metric used to evaluate the performance of a regression model, indicating the average
squared difference between the observed actual outturns and the predictions made by the model. The goal of the
regressor is to minimize the MSE at each step of building the tree.

1.20. Decision Tree 159

ml_notes.akkefa.com, Release 0.0.1

How it Works Using MSE

1. Starting at the Root: The entire dataset is considered as the root.

2. Best Split Decision: To decide on a split, it calculates the MSE for every possible split in every feature and
chooses the one that results in the lowest MSE. This split is the one that, if used to split the dataset into two
groups, would result in the most similar responses within each group.

3. Recursion on Subsets: This process of finding the best split is then recursively applied to each resulting subset.
The recursion is completed when the algorithm reaches a predetermined stopping criterion, such as a maximum
depth of the tree or a minimum number of samples required to split a node further.

4. Prediction: For a prediction, the input features of a new data point are fed through the decision tree. The path
followed by the data point through the tree leads to a leaf node. The average of the values in this leaf node is
used as the prediction.

160 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Example

Imagine we are using a dataset of houses, where our features include the number of bedrooms, the number of bathrooms,
square footage, and the year built, and our target variable is the house price.

1. Root: Initially, the entire dataset is the root.

2. Best Split Calculation: The algorithm evaluates all features and their possible values to find the split that would
result in subsets with the most similar house prices (lowest MSE). Suppose the best initial split divides the dataset
into houses with less than 2 bathrooms and houses with 2 or more bathrooms.

3. Recursive Splitting: This process continues, with each subset being split on features and feature values that
minimize the MSE within each resulting subset. For instance, within the subset of houses with less than 2
bathrooms, the next split might be on the number of bedrooms.

4. Stopping Criterion Reached: Eventually, when the stopping criteria are met (for example, a maximum depth
of the tree), the splitting stops.

5. Making Predictions: To predict the price of a new house, we would input its features into the decision tree. The
house would follow a path down the tree determined by its features until it reaches a leaf node. The prediction
would be the average price of the houses in that leaf node.

This example simplifies the complexity involved in building a decision tree regressor but gives an outline of how MSE
is used to create a model that can predict continuous outcomes like house prices.

1.20. Decision Tree 161

ml_notes.akkefa.com, Release 0.0.1

1.20.3 Decision Tree Classifier

Decision Tree Classifier is similar to Decision Tree Regressor, with the difference that it classifies the target variable.

A Decision Tree Classifier is a flowchart-like structure in which each internal node represents a “test” on an attribute
(e.g., “Is the animal you’re thinking of larger than a breadbox?”), each branch represents the outcome of the test, and
each leaf node represents a class label (decision taken after computing all attributes). The paths from root to leaf
represent classification rules.

How it works:

1. Starting at the root: Based on the data (features of animals in our analogy), the algorithm chooses the most sig-
nificant feature to split the data into groups. This is usually done using measures like Gini impurity or information
gain to determine which feature brings us closer to a decision.

2. Splitting: This process is repeated for each child node (e.g., if the first question splits the animals into “larger
than a breadbox” and “not larger than a breadbox,” each of those groups is then split again based on another
feature), creating the tree.

3. Stopping Criteria: The tree stops growing when it meets a stopping criterion, like when it can no longer reduce
uncertainty or when it reaches a specified depth.

4. Decision Making: Once built, you can use the tree to classify new cases (predict the class of a new animal) by
following the decisions in the tree based on the features of the new case.

Gini Impurity: Simplified

𝐻(𝑋𝑚) =
∑︁
𝑘

𝑝𝑚𝑘(1− 𝑝𝑚𝑘)

The Gini impurity formula you’ve provided is a mathematical way to quantify how “pure” a set (usually a set of data
points in a decision tree node) is. It tells us what the chance is that a randomly chosen element from the set is incorrectly
labeled if it was randomly labeled according to the distribution of classes in the set. Let’s break it down:

• 𝐻(𝑋𝑚) is the Gini impurity of a set 𝑚.

• 𝑝𝑚𝑘 is the proportion (or probability) of class 𝑘 in the set 𝑚

The formula sums up the product of the probability of each class with the probability of not being that class (which
is 1− 𝑝𝑚𝑘). This product gives a measure of the probability of misclassification for each class. By summing over all
classes, the Gini impurity considers the probability of misclassification regardless of what class we’re talking about.

162 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Let’s go through a step-by-step example with a tangible dataset.

Example Dataset:

Imagine we have a small dataset of 10 animals, with two features: “Can Fly” (Yes or No) and “Has Fins” (Yes or No).
We want to classify them into two classes: “Bird” or “Fish”.

Here are the animals:

• 4 are birds that can fly.

• 2 are birds that cannot fly (perhaps penguins).

• 3 are fish that have fins.

• 1 is a fish that does not have fins (maybe an eel).

Step 1: Calculate Class Proportions

We first need to calculate the proportions of each class in the set.

• Birds: 𝑝𝑏𝑖𝑟𝑑 = 4+2
10 = 6

10 = 0.6

• Fish: 𝑝𝑓𝑖𝑠ℎ = 3+1
10 = 4

10 = 0.4

Step 2: Plug Proportions Into the Formula

Now we use the Gini formula.

• Gini for birds: 𝑝𝑏𝑖𝑟𝑑 × (1− 𝑝𝑏𝑖𝑟𝑑) = 0.6× (1− 0.6) = 0.6× 0.4 = 0.24

• Gini for fish: 𝑝𝑓𝑖𝑠ℎ × (1− 𝑝𝑓𝑖𝑠ℎ) = 0.4× (1− 0.4) = 0.4× 0.6 = 0.24

Step 3: Sum the Gini for All Classes

The Gini impurity for the set is the sum of the Gini for all classes.

• Total Gini impurity: 𝐻(𝑋𝑚) = 0.24 + 0.24 = 0.48

This Gini impurity value of 0.48 is relatively high, indicating that the set is quite mixed (if it were 0, the set would be
perfectly pure).

Step 4: Interpretation

A Gini impurity of 0.48 means that if we pick a random animal from this dataset and then randomly assign a label
based on the distribution of the classes (60% chance of being labeled as a bird and 40% as a fish), there’s a 48% chance
of mislabeling the animal.

The goal in a decision tree is to create splits that result in subsets with lower Gini impurity scores compared to the
parent node. A perfect split would be one that results in nodes with a Gini impurity of 0, meaning all elements in each
node are from a single class.

• Gini Impurity = 1 - sum (probability of each class)^2

The best (lowest) Gini impurity is 0, where all elements belong to a single class (pure). The worst (highest) Gini
impurity is 0.5 in a binary classification, where the dataset is evenly split between two classes (completely mixed).

1.20. Decision Tree 163

ml_notes.akkefa.com, Release 0.0.1

Example:

Let’s say we have a dataset of 10 animals, 6 are fish and 4 are birds.

• The probability of picking a fish randomly is 6/10, and the probability of picking a bird is 4/10.

• Gini Impurity = 1 - ((6/10)^2 + (4/10)^2) = 1 - (0.36 + 0.16) = 1 - 0.52 = 0.48

This Gini score tells us how often we would be wrong if we randomly assigned a label to an animal in this group based
on the distribution of classes. A lower score is better, indicating less impurity.

164 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

We’ll apply the Gini impurity formula:

𝐺𝑖𝑛𝑖 : 𝐻(𝑋𝑚) =
∑︁
𝑘

𝑝𝑚𝑘(1− 𝑝𝑚𝑘)

For the given probabilities of the two classes:

𝑝class1 = 0.77777777777 𝑝class2 = 0.22222222222

The Gini impurity for each class is calculated as:

For class 1: 𝐻(𝑋𝑚1) = 𝑝class1(1− 𝑝class1) = 0.77777777777× (1− 0.77777777777)

For class 2: 𝐻(𝑋𝑚2) = 𝑝class2(1− 𝑝class2) = 0.22222222222× (1− 0.22222222222)

Adding the Gini impurity of both classes:

𝐻(𝑋𝑚) = 𝐻(𝑋𝑚1) + 𝐻(𝑋𝑚2)

𝐻(𝑋𝑚) = 0.77777777777× 0.22222222223 + 0.22222222222× 0.77777777778

𝐻(𝑋𝑚) = 0.17283950617 + 0.17283950616

𝐻(𝑋𝑚) = 0.34567901233

The Gini impurity for the binary classification with the given class probabilities is approximately 0.3457.

1.20.4 Ensemble Methods

Ensemble methods are techniques that combine multiple models to improve the robustness and accuracy of predictions.
These methods work on the principle that a group of “weak learners” can come together to form a “strong learner.”

Bagging (Bootstrap Aggregating)

Bagging reduces variance and helps to avoid overfitting. It involves creating multiple versions of a predictor and using
these to get an aggregated predictor. The steps are:

• Randomly create “bootstrap” samples of the original dataset (with replacement).

• Train a model on each of these samples.

• Combine the models using the average (regression) or majority vote (classification).

1.20. Decision Tree 165

ml_notes.akkefa.com, Release 0.0.1

Example: Random Forest is a popular bagging ensemble of decision trees. Each tree is built on a bootstrap sample of
the data, and the final prediction is averaged across all trees.

166 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Boosting

Boosting focuses on converting weak learners into strong learners sequentially. Each model attempts to correct the
errors made by the previous ones. The steps include:

• Train a model on the entire dataset.

• Build another model to correct the errors of the first model.

• Continue adding models until a limit is reached or no further improvements can be made.

• The final model makes predictions based on the weighted sum of the predictions of all models.

Examples: AdaBoost (Adaptive Boosting) and Gradient Boosting are well-known boosting methods. AdaBoost adjusts
the weights of incorrectly classified instances so that subsequent classifiers focus more on difficult cases.

Advantages of Ensemble Methods

• Improved Accuracy: Combining models often yields better results than any single model.

• Reduced Overfitting: Especially with bagging and stacking, since they average out biases.

• Increased Robustness: The ensemble’s prediction is less sensitive to noise and outliers.

Disadvantages of Ensemble Methods

• Increased Complexity: More parameters to tune and a more complicated model to explain.

• Higher Computational Cost: Training multiple models is computationally more expensive.

• Risk of Overfitting with Boosting: Especially if the dataset is noisy.

Ensemble methods are widely used in various applications, from competitive machine learning competitions to practical
business problems, because of their ability to improve prediction accuracy and model robustness.

1.20. Decision Tree 167

ml_notes.akkefa.com, Release 0.0.1

1.20.5 Adaboost

The AdaBoost (Adaptive Boosting) algorithm is a powerful ensemble technique used to improve the performance of
binary classifiers. It combines multiple weak learners (a learner that performs slightly better than random guessing) to
create a strong classifier. Here’s a detailed breakdown of how AdaBoost works and the key formula involved:

How AdaBoost Works:

1. Initialization: Each observation in the dataset is initially given an equal weight. This signifies that at the start,
every instance is equally important for the model.

2. Iterative Training:

• Weak Learner Training: In each round, a weak learner is trained on the dataset. The goal of this learner
is only to be slightly better than random guessing, regardless of its complexity.

• Error Calculation: After training a weak learner, AdaBoost calculates the error rate of the learner. This
error is weighted based on the weights of the observations. The error rate (𝜖) is essentially the sum of the
weights of the incorrectly classified observations divided by the sum of all weights.

• Learner Weight Calculation: AdaBoost assigns a weight (𝛼) to the weak learner based on its accuracy.
More accurate learners are given more weight. The weight is calculated using the formula: 𝛼 = 1

2 ln
(︀
1−𝜖
𝜖

)︀
,

where ln is the natural logarithm.

• Update Weights: The weights of the observations are updated so that the weights of the incorrectly classi-
fied observations are increased, and the weights of the correctly classified observations are decreased. This
makes the algorithm focus more on the harder-to-classify instances in the next round.

• Normalization: The updated weights are normalized so that their sum is 1.

3. Final Model:

• After a specified number of rounds, or if perfect prediction is achieved, AdaBoost combines the weak
learners into a final model. The final model makes predictions based on a weighted majority vote (or sum)
of the weak learners’ predictions. Each weak learner’s vote is weighted by its 𝛼 value.

Key Formulae:

• Error of a Weak Learner: 𝜖 =
∑︀𝑁

𝑖=1 𝑤𝑖·error𝑖∑︀𝑁
𝑖=1 𝑤𝑖

, where 𝑤𝑖 is the weight of the 𝑖𝑡ℎ observation, and error𝑖 is an
indicator function that is 1 if the observation is misclassified and 0 otherwise.

• Weight of a Weak Learner: 𝛼 = 1
2 ln

(︀
1−𝜖
𝜖

)︀
.

• Weight Update Rule: For each observation, the new weight (𝑤′
𝑖) is updated using the rule: 𝑤′

𝑖 = 𝑤𝑖 · 𝑒𝛼·error𝑖 ,
followed by a normalization step.

Conclusion:

AdaBoost is effective because it focuses on the observations that are hard to classify and gives more importance to the
more accurate learners. This adaptiveness to the errors of the learners makes it a powerful algorithm for classification
problems. The sequential process of adjusting weights puts more focus on instances that are hard to predict, leading to
a highly accurate ensemble model.

168 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

1.20.6 Gradient Boosting

Gradient Boosting is a powerful machine learning algorithm that’s used for both regression and classification problems.
It builds a model in a stage-wise fashion like AdaBoost, but it generalizes the boosting process by allowing optimization
of an arbitrary differentiable loss function.

How Gradient Boosting Works:

1. Initialization: It begins with a simple model (often a decision tree), which could be just a prediction of the mean
of the target values. This initial model serves as the base upon which further models (often called trees) are
added.

2. Sequential Tree Building:

• For each iteration, the algorithm first calculates the residuals or errors of the current model. In the context
of regression, these are simply the differences between the predicted and actual values. In classification,
the process is slightly more complex, involving the gradient of the loss function.

• A new model (tree) is then trained to predict these residuals or gradients. Essentially, instead of directly
predicting the target value or class, each new model aims to correct the mistakes of the combined ensemble
of all previous models.

• Once the new model is trained on the residuals, it is added to the ensemble. The idea is to take a step in
the direction that minimizes the loss, akin to the gradient descent optimization algorithm, hence the name
“Gradient Boosting.”

3. Loss Function Optimization:

• Gradient Boosting involves the minimization of a loss function. The loss function quantifies how far off a
prediction is from the actual result. The choice of loss function depends on the type of problem (regression,
classification, etc.).

• After each tree is added, the algorithm updates the predictions for each observation, effectively taking a
step that reduces the loss (error).

4. Shrinkage (Learning Rate):

• To prevent overfitting, Gradient Boosting introduces a learning rate (also known as “shrinkage”) that scales
the contribution of each tree. A smaller learning rate requires more trees to model the data but generally
results in a more robust model.

Example:

Imagine we’re trying to predict the price of houses based on features like size, location, and number of bedrooms. Our
initial model might predict that each house costs $300,000, which is the average price of all houses in the training set.

1. First Iteration: We calculate the residuals (actual price - predicted price) for each house. Then, we train a
decision tree to predict these residuals based on our features.

2. Update Predictions: We add this new tree to our model, adjusting our predictions for each house. Suppose this
tree predicts that houses with 3 bedrooms are undervalued by $50,000. Our updated predictions for 3-bedroom
houses would increase by this amount.

3. Repeat: We calculate new residuals based on our updated predictions and train a new tree to predict these
residuals. This process repeats, with each new tree correcting the errors of the ensemble so far.

4. Final Model: After a specified number of iterations, or once our loss has been minimized to an acceptable level,
we combine all the trees to make final predictions.

1.20. Decision Tree 169

ml_notes.akkefa.com, Release 0.0.1

Conclusion:

Gradient Boosting is a versatile and powerful technique capable of handling both regression and classification prob-
lems. Its sequential nature, focusing on correcting its own errors, makes it highly effective, though it can be prone
to overfitting if not properly regularized or if too many trees are used. The learning rate and the number of trees are
crucial hyperparameters that need careful tuning to achieve the best performance.

1.21 What is Deep Learning

1.21.1 Overview

Deep Learning

a type of machine learning based on artificial neural networks in which multiple layers of processing are used to extract
progressively higher level features from data.

Machine Learning

development of computer systems that can learn to more accurately predict the outcomes without following explicit
instructions, by using algorithms and statistical models to draw inferences from patterns in data.

Differences between Deep Learning and Machine Learning

Machine Learning

• uses algorithms to parse data, learn from that data, and make informed decisions based on what it has learned.

• needs a human to identify and hand-code the applied features based on the data type. | tries to learn features
extraction and representation as well.

• tend to parse data in parts, then combined those into a result (e.g. first number plate localization and then
recognition).

• requires relatively less data and training time

Deep learning

• structures algorithms in layers to create an “artificial neural network” that can learn and make intelligent decisions
on its own.

• tries to learn features extraction and representation as well.

• Deep learning systems look at an entire problem and generate the final result in one go (e.g. outputs the coordi-
nates and the class of object together).

• requires a lot more data and training time

170 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

1.21.2 Applications Of Machine Learning/Deep Learning

• Email spam detection

• Fingerprint / face detection & matching (e.g., phones)

• Web search (e.g., DuckDuckGo, Bing, Google)

• Sports predictions

• ATMs (e.g., reading checks)

• Credit card fraud

• Stock predictions

1.21.3 Broad categories of Deep learning

1.21.4 Perceptron

Definition

Simplest artificial neuron that takes binary inputs and based on their weighted sum reaching a threshold, generates a
binary output.

Artificial neurons

• Takes in multiple inputs and learns what should be the appropriate output

• Essentially a mathematical function where the weights multiplied with the inputs are learnable

• Acts like a logic gate but the operation performed adjusts according to the data

• connect them in a network to create an artificial brain(let)

History of the Perceptron

• Invented in 1957 by Frank Rosenblatt to binary classify an input data.

• An attempt to replicate the process and ability of human nervous system.

1.21. What is Deep Learning 171

ml_notes.akkefa.com, Release 0.0.1

A Biological Neuron

McCulloch & Pitts Neuron Model

Computational Model of a Biological Neuron

Terminology

• Net input = weighted inputs, 𝑧

• Activations = activation function(net input); 𝑎 = 𝜎(𝑧)

• Label output = threshold(activations of last layer); 𝑦 = 𝑓(𝑎)

Special cases:

• In perceptron: activation function = threshold function

• In linear regression: activation = net input = output

𝜎

(︃
𝑚∑︁
𝑖=1

𝑥𝑖𝑤𝑖 + 𝑏

)︃
= 𝜎

(︀
x𝑇w + 𝑏

)︀
= 𝑦

Often more convenient notation: define bias unit as 𝑤0 and prepend a 1 to each input vector as an additional feature
value

𝜎

(︃
𝑚∑︁
𝑖=0

𝑥𝑖𝑤𝑖

)︃
= 𝜎

(︀
x⊤w

)︀
= 𝑦

Perceptron Learning Algorithm

Let 𝒟 =
(︀⟨︀
x[1], 𝑦[1]

⟩︀
,
⟨︀
x[2], 𝑦[2]

⟩︀
, . . . ,

⟨︀
x[𝑛], 𝑦[𝑛]

⟩︀)︀
∈ (R𝑚 × {0, 1})𝑛

1. Initialize w := 0𝑚 (assume notation where weight incl. bias)

2. For every training epoch:

• For every
⟨︀
x[𝑖], 𝑦[𝑖]

⟩︀
∈ 𝒟 :

1. 𝑦[𝑖] := 𝜎
(︀
x[𝑖]⊤w

)︀
2. err :=

(︀
𝑦[𝑖] − 𝑦[𝑖]

)︀
3. w := w + 𝑒𝑟𝑟 × x[𝑖]

Vectorization in Python

Running Computations is a Big Part of Deep Learning!

import torch

def forloop(x, w):
z = 0.
for i in range(len(x)):

z += x[i] * w[i]
return z

(continues on next page)

172 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

def listcomprehension(x, w):
return sum(x_i*w_i for x_i, w_i in zip(x, w))

def vectorized(x, w):
return x.dot(w)

x, w = torch.rand(1000), torch.rand(1000)

%timeit -r 10 -n 10 forloop(x, w)

%timeit -r 10 -n 10 listcomprehension(x, w)

%timeit -r 10 -n 10 vectorized(x, w)

8.78 ms ± 41.5 µs per loop (mean ± std. dev. of 10 runs, 10 loops each)

7.37 ms ± 79.9 µs per loop (mean ± std. dev. of 10 runs, 10 loops each)
The slowest run took 12.51 times longer than the fastest. This could mean that an␣
→˓intermediate result is being cached.
6.76 µs ± 10.8 µs per loop (mean ± std. dev. of 10 runs, 10 loops each)

Perceptron Pytorch Implementation

Label data

import torch
import matplotlib.pyplot as plt

c1_mean , c2_mean = -0.5 , 0.5

c1 = torch.distributions.uniform.Uniform(c1_mean-1,c1_mean+1).sample((200,2))
c2 = torch.distributions.uniform.Uniform(c2_mean-1,c2_mean+1).sample((200,2))
features = torch.cat([c1,c2], axis=0)

labels = torch.cat([torch.zeros((200,1)), torch.ones((200,1))], axis = 0)
data = torch.cat([features, labels],axis=1)

X, y = data[:, :2], data[:, 2]
y = y.to(torch.int)

print('X.shape:', X.shape)
print('y.shape:', y.shape)

X_train, X_test = X[:300], X[100:]
y_train, y_test = y[:300], y[100:]

(continues on next page)

1.21. What is Deep Learning 173

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

Normalize (mean zero, unit variance)
mu, sigma = X_train.mean(axis=0), X_train.std(axis=0)
X_train = (X_train - mu) / sigma
X_test = (X_test - mu) / sigma

plt.scatter(X_train[y_train==0, 0], X_train[y_train==0, 1], label='class 0', marker='o')
plt.scatter(X_train[y_train==1, 0], X_train[y_train==1, 1], label='class 1', marker='s')
plt.title('Training set')
plt.xlabel('feature 1')
plt.ylabel('feature 2')
plt.xlim([-3, 3])
plt.ylim([-3, 3])
plt.legend()
plt.show()

plt.scatter(X_test[y_test==0, 0], X_test[y_test==0, 1], label='class 0', marker='o')
plt.scatter(X_test[y_test==1, 0], X_test[y_test==1, 1], label='class 1', marker='s')
plt.title('Test set')
plt.xlabel('feature 1')
plt.ylabel('feature 2')
plt.xlim([-3, 3])
plt.ylim([-3, 3])
plt.legend()
plt.show()

X.shape: torch.Size([400, 2])
y.shape: torch.Size([400])

174 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

1.21. What is Deep Learning 175

ml_notes.akkefa.com, Release 0.0.1

Train and evaluate

import torch
device = torch.device("cuda:0" if torch.cuda.is_available() else "mps")

class Perceptron:
def __init__(self, num_features):

self.num_features = num_features
self.weights = torch.zeros(num_features, 1,

dtype=torch.float32, device=device)
self.bias = torch.zeros(1, dtype=torch.float32, device=device)

self.ones = torch.ones((1, 1), device=device)
self.zeros = torch.zeros((1, 1), device=device)

def forward(self, x):
linear = torch.mm(x, self.weights) + self.bias
predictions = torch.where(linear > 0., self.ones, self.zeros)
return predictions

def backward(self, x, y):
predictions = self.forward(x)
errors = y - predictions

(continues on next page)

176 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

return errors

def train(self, x, y, epochs):
for e in range(epochs):

for i in range(y.shape[0]):
errors = self.backward(x[i].reshape(1, self.num_features), y[i]).

→˓reshape(-1)
self.weights += (errors * x[i]).reshape(self.num_features, 1)
self.bias += errors

def evaluate(self, x, y):
predictions = self.forward(x).reshape(-1)
accuracy = torch.sum(predictions == y).float() / y.shape[0]
return accuracy

ppn = Perceptron(num_features=2)

X_train_tensor = torch.tensor(X_train, dtype=torch.float32, device=device)
y_train_tensor = torch.tensor(y_train, dtype=torch.float32, device=device)

ppn.train(X_train_tensor, y_train_tensor, epochs=5)

print('Model parameters:')
print('Weights: %s' % ppn.weights)
print('Bias: %s' % ppn.bias)

X_test_tensor = torch.tensor(X_test, dtype=torch.float32, device=device)
y_test_tensor = torch.tensor(y_test, dtype=torch.float32, device=device)

test_acc = ppn.evaluate(X_test_tensor, y_test_tensor)
print('Test set accuracy: %.2f%%' % (test_acc*100))

1.22 Vectors, Matrices, and Tensors

Scalars, vectors, matrices, and tensors are the fundamental data structures of deep learning. In this section, we will
briefly review these concepts.

Scalar

rank-0 tensor
𝑥 ∈ R
x = 1.23

Vector

rank-1 tensor

1.22. Vectors, Matrices, and Tensors 177

ml_notes.akkefa.com, Release 0.0.1

𝑥 ∈ R𝑛𝑥1

x =

⎡⎢⎢⎢⎣
𝑥1

𝑥2

...
𝑥𝑛

⎤⎥⎥⎥⎦
Matrix

rank-2 tensor
𝑥 ∈ R𝑛𝑥𝑚

X =

⎡⎢⎢⎢⎣
𝑥1,1 𝑥1,2 . . . 𝑥1,𝑛

𝑥2,1 𝑥2,2 . . . 𝑥2,𝑛

...
...

. . .
...

𝑥𝑚,1 𝑥𝑚,2 . . . 𝑥𝑚,𝑛

⎤⎥⎥⎥⎦

import torch

t = torch.tensor([[1, 2, 3, 4,], [6, 7, 8, 9]])

print(t)
print(t.shape)
print(t.ndim)
print(t.dtype)

tensor([[1, 2, 3, 4],
[6, 7, 8, 9]])

torch.Size([2, 4])
2
torch.int64

1.22.1 Data onto the GPU

print(torch.cuda.is_available())
print(torch.backends.mps.is_available())

if torch.cuda.is_available():
t = t.to(torch.device('cuda:0'))
print(t)

False
False

178 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

1.22.2 Broadcasting

Making Vector and Matrix computations more convenient

Computing the Output From Multiple Training Examples at Once

• The perceptron algorithm is typically considered an “online” algorithm (i.e., it updates the weights after each
training example)

• However, during prediction (e.g., test set evaluation), we could pass all data points at once (so that we can get rid
of the “forloop”)

• Two opportunities for parallelism:

1. computing the dot product in parallel

2. computing multiple dot products at once

import torch

X = torch.arange(6).view(2, 3)

print(X)

w = torch.tensor([1, 2, 3])

print(w)

print(X.matmul(w))

w = w.view(-1, 1)

print(X.matmul(w))

tensor([[0, 1, 2],
[3, 4, 5]])

tensor([1, 2, 3])
tensor([8, 26])
tensor([[8],

[26]])

This (general) feature is called “broadcasting”

print(torch.tensor([1, 2, 3]) + 1)

t = torch.tensor([[4, 5, 6], [7, 8, 9]])

print(t)

print(t + torch.tensor([1, 2, 3]))

tensor([2, 3, 4])
tensor([[4, 5, 6],

[7, 8, 9]])
(continues on next page)

1.22. Vectors, Matrices, and Tensors 179

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

tensor([[5, 7, 9],
[8, 10, 12]])

1.22.3 Notational Linear Algebra

X = torch.arange(50, dtype=torch.float).view(10, 5)

print(X)

fc = torch.nn.Linear(in_features=5, out_features=3)

print(fc.weight)

print(fc.bias)

print(f"X dim: {X.size()}")
print(f"Weights dim: {fc.weight.size()}")
print(f"bias dim: {fc.bias.size()}")

A = fc(X)

print(f"A dim: {A.size()}")

tensor([[0., 1., 2., 3., 4.],
[5., 6., 7., 8., 9.],
[10., 11., 12., 13., 14.],
[15., 16., 17., 18., 19.],
[20., 21., 22., 23., 24.],
[25., 26., 27., 28., 29.],
[30., 31., 32., 33., 34.],
[35., 36., 37., 38., 39.],
[40., 41., 42., 43., 44.],
[45., 46., 47., 48., 49.]])

Parameter containing:
tensor([[0.0656, 0.4389, -0.4282, 0.2833, -0.1621],

[0.0115, -0.0285, -0.2042, 0.3562, 0.0655],
[-0.2909, -0.0294, 0.0304, -0.2640, 0.0622]], requires_grad=True)

Parameter containing:
tensor([-0.0713, -0.0811, -0.1237], requires_grad=True)
X dim: torch.Size([10, 5])
Weights dim: torch.Size([3, 5])
bias dim: torch.Size([3])
A dim: torch.Size([10, 3])

180 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

1.23 Loss Functions

1.23.1 Introduction

Imagine the scenario, Once you developed your machine learning model that you believe, successfully identifying the
cats and dogs but how do you know this is the best result?

we are looking for the metrics or a function that we can use to optimize our model performance.The loss function tells
how good your model is in predictions.

• If the model predictions are closer to the actual values the Loss will be minimum.

• if the predictions are totally away from the original values the loss value will be the maximum.

𝐿𝑜𝑠𝑠 = 𝑎𝑏𝑠(𝑝𝑟𝑒𝑑𝑖𝑐𝑡˘𝑎𝑐𝑡𝑢𝑎𝑙)

On the basis of the Loss value, you can update your model until you get the best result.

1.23.2 Classification

Cross-Entropy or Log Loss

Cross entropy loss is used mostly when we have a binary classification problem; that is, where the network outputs
either 1 or 0.

Suppose we are given a training dataset, D = {(𝑥𝑖, 𝑦𝑖) , · · · , (𝑥𝑁 , 𝑦𝑁)} and 𝑦𝑖 ∈ {0, 1}.
We can then write this in the following form:

𝑦𝑖 = 𝑓 (𝑥𝑖; 𝜃)

Here, 𝜃 is the parameters of the network (weights and biases). We can express this in terms of a Bernoulli distribution,
as follows:

𝑃 (𝑥𝑖 → 𝑦𝑖 | 𝜃) = 𝑦𝑦𝑖

𝑖 (1− 𝑦𝑖)
1−𝑦𝑖

The probability, given the entire dataset, is then as follows:

𝑃 (𝑥1, · · · , 𝑥𝑁 , 𝑦1, · · · , 𝑦𝑁) =

𝑁∏︁
𝑖=1

𝑃 (𝑥𝑖 → 𝑦𝑖 | 𝜃) =

𝑁∏︁
𝑖=1

𝑦𝑦𝑖

𝑖 (1− 𝑦𝑖)
1−𝑦𝑖

If we take its negative-log likelihood, we get the following:

− log𝑃 (𝑥1, · · · , 𝑥𝑁 , 𝑦1, · · · , 𝑦𝑁) = − log

𝑁∏︁
𝑖=1

𝑦𝑦𝑖

𝑖 (1− 𝑦𝑖)
1−𝑦𝑖

So, we have the following:

𝐿(𝑦, 𝑦) = −
𝑁∑︁
𝑖=1

𝑦𝑖 log 𝑦𝑖 + (1− 𝑦𝑖) log (1− 𝑦𝑖)

1.23. Loss Functions 181

ml_notes.akkefa.com, Release 0.0.1

Cross-entropy loss

Cross entropy loss is a metric used to measure how well a classification model in machine learning performs. The loss
(or error) is measured as a number between 0 and 1, with 0 being a perfect model. The goal is generally to get your
model as close to 0 as possible.

Cross entropy loss measures the difference between the discovered probability distribution of a machine learning clas-
sification model and the predicted distribution.

1.24 Evaluation Metrics

Evaluation metrics are used to evaluate the performance of a machine learning model. They provide a way to quanti-
tatively measure how well the model is performing on a given task.

1.24.1 Classification

In machine learning, classification is a supervised learning problem in which the model is trained to predict the class
of an input data point.

Note: It is important to choose an appropriate evaluation metric for your problem. For example, in a binary classifica-
tion problem, you may be more interested in minimizing false negatives than false positives, in which case you would
want to use a metric like recall rather than precision.

Confusion Matrix

Confusion matrix is a performance measurement for machine learning classification problem where output can be two
or more classes.

In a confusion matrix, the rows represent the actual class labels, and the columns represent the predicted class labels.

Here, TP (true positive) is the number of times the classifier predicted “positive” and the actual label was “positive”.
FP (false positive) is the number of times the classifier predicted “positive” and the actual label was “negative”. FN
(false negative) is the number of times the classifier predicted “negative” and the actual label was “positive”. TN (true
negative) is the number of times the classifier predicted “negative” and the actual label was “negative”.

Here is an example of how to compute the values in a confusion matrix:

182 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Predicted
Positive Negative

Actual
Positive 10 5
Negative 3 2

The values in the confusion matrix can be used to compute various performance metrics, such as precision, recall, and
accuracy.

Calculate Confusion Matrix for a 2 classes problem

Individual Number 1 2 3 4 5 6 7 8 9 10 11 12
Actual Classification 1 1 1 1 1 1 1 1 0 0 0 0
Predicted Classification 0 0 1 1 1 1 1 1 1 0 0 0
Result FN FN TP TP TP TP TP TP FP TN TN TN

import torch
from sklearn import metrics
import matplotlib.pyplot as plt
import torchmetrics

(continues on next page)

1.24. Evaluation Metrics 183

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

simulate a classification problem
y_true = torch.randint(0,2, (7,))
y_pred = torch.randint(0,2, (7,))

print(f"{y_true=}")
print(f"{y_pred=}")
print(f"confusion_matrix {metrics.confusion_matrix(y_true, y_pred)} ")

tn, fp, fn, tp = metrics.confusion_matrix(y_true, y_pred).ravel()
print(tn, fp, fn, tp)

disp = metrics.ConfusionMatrixDisplay(confusion_matrix=metrics.confusion_matrix(y_true,␣
→˓y_pred))
disp.plot()
plt.show()

print(f"{torchmetrics.functional.confusion_matrix(y_true, y_pred,task='binary')=}")

y_true=tensor([1, 0, 1, 1, 0, 0, 0])
y_pred=tensor([0, 1, 1, 0, 0, 0, 1])
confusion_matrix [[2 2]
[2 1]]
2 2 2 1

184 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

torchmetrics.functional.confusion_matrix(y_true, y_pred,task='binary')=tensor([[2, 2],
[2, 1]])

Precision

The above equation can be explained by saying, from all the classes we have predicted as positive, how many are
actually positive. Precision should be high as possible.

precision =
TP

TP + FP

Recall / Sensitivity / True Positive Rate

Sensitivity tells us what proportion of the positive class got correctly classified.

The above equation can be explained by saying, from all the positive classes, how many we predicted correctly. A
simple example would be to determine what proportion of the actual sick people were correctly detected by the model.

Recall should be high as possible.

recall =
TP

TP + FN

Note: Precision is about your prediction. Recall is about reality.

If your job is to identify thieves.

False Negative Rate

False Negative Rate (FNR) tells us what proportion of the positive class got incorrectly classified by the classifier.

A higher TPR and a lower FNR is desirable since we want to correctly classify the positive class.

F N R =
FN

TP + FN

1.24. Evaluation Metrics 185

ml_notes.akkefa.com, Release 0.0.1

Specificity / True Negative Rate

Specificity tells us what proportion of the negative class got correctly classified.

Taking the same example as in Sensitivity, Specificity would mean determining the proportion of healthy people who
were correctly identified by the model.

Specificity =
TN

TN + FP

False Positive Rate

FPR tells us what proportion of the negative class got incorrectly classified by the classifier.

A higher TNR and a lower FPR is desirable since we want to correctly classify the negative class.

Out of these metrics, Sensitivity and Specificity are perhaps the most important and we will see later on how these are
used to build an evaluation metric. But before that, let’s understand why the probability of prediction is better than
predicting the target class directly.

F P R =
FP

FP + TN

The metrics change with the changing threshold values. We can generate different confusion matrices and compare the
various metrics that we discussed in the previous section. But that would not be a prudent thing to do. Instead, what
we can do is generate a plot between some of these metrics so that we can easily visualize which threshold is giving us
a better result.

The AUC-ROC curve solves just that problem!

print(f"{metrics.precision_score(y_true, y_pred)=}")
print(f"{metrics.recall_score(y_true, y_pred)=}")
print(f"{metrics.accuracy_score(y_true, y_pred)=}")
print(f"{metrics.f1_score(y_true, y_pred)=}")
print(f"{metrics.fbeta_score(y_true, y_pred, beta=0.5)=}")

metrics.precision_score(y_true, y_pred)=0.3333333333333333
metrics.recall_score(y_true, y_pred)=0.3333333333333333
metrics.accuracy_score(y_true, y_pred)=0.42857142857142855
metrics.f1_score(y_true, y_pred)=0.3333333333333333
metrics.fbeta_score(y_true, y_pred, beta=0.5)=0.3333333333333333

186 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

F1-score

The F1-score is the harmonic mean of the precision and the recall. Using the harmonic mean has the effect that a good
F1-score requires both a good precision and a good recall.

𝐹1 = 2 · precision · recall
precision + recall

It is difficult to compare two models with low precision and high recall or vice versa. So to make them comparable,
we use F-Score. F-score helps to measure Recall and Precision at the same time. It uses Harmonic Mean in place of
Arithmetic Mean by punishing the extreme values more.

Drawbacks

One potential drawback of the F1 score as an evaluation metric is that it is sensitive to imbalanced class distributions.
This means that if one class is much more prevalent in the data than the other, the F1 score may not be a reliable
indicator of the classifier’s performance.

For example, consider a binary classification problem where the positive class is rare, with only 1% of the samples
belonging to that class. In this case, a classifier that simply predicts the negative class all the time would have an F1
score of 0, even though it is making the correct prediction 99% of the time. On the other hand, a classifier that makes
a small number of correct predictions for the positive class (e.g., 5 out of 100) would have a relatively high F1 score,
even though it is performing poorly overall.

ROC Curve and AUC

Best explaintion

• https://www.analyticsvidhya.com/blog/2020/06/auc-roc-curve-machine-learning/

• https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc

• https://stephenallwright.com/metric-choice/

• https://mlu-explain.github.io/

1.24.2 Ranking | Recommendation | Information Retrieval

None

1.24.3 Language Model

ROUGE

ROUGE is actually a set of metrics that are used to evaluate the quality of a text summarization system.

ROUGE-N Overlap of n-grams[2] between the system and reference summaries.

ROUGE-1 refers to the overlap of unigram (each word) between the system and reference summaries.

ROUGE-2 refers to the overlap of bigrams between the system and reference summaries.

1.24. Evaluation Metrics 187

ml_notes.akkefa.com, Release 0.0.1

1.25 Linear Algebra

1.25.1 Multiplying Matrices and Vectors

Multiplication of two A x B matrices a third matrix C.

𝐶 = 𝐴𝐵

The product operation is defined by

𝐶𝑖,𝑗 =
∑︁
𝑘=1

𝐴𝑖,𝑘𝐵𝑘,𝑗

The value at index i,j of result matrix C is given by dot product of ith row of Matrix A with jth column of Matrix

E.g

𝐴 =

[︂
1 2
3 4

]︂
𝐵 =

[︂
2
6

]︂
𝐶1,1 =

∑︁
𝑘=1

𝐴1,𝑘𝐵𝑘,1 = 1 * 2 + 2 * 6 = 14

1.25.2 Hadamard product & element-wise product

Element wise of multiplication to generate another matrix of same dimension.

𝐶 = 𝐴 *𝐵⎡⎣𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

⎤⎦ ∘
⎡⎣𝑏11 𝑏12 𝑏13
𝑏21 𝑏22 𝑏23
𝑏31 𝑏32 𝑏33

⎤⎦ =

⎡⎣𝑎11 𝑏11 𝑎12 𝑏12 𝑎13 𝑏13
𝑎21 𝑏21 𝑎22 𝑏22 𝑎23 𝑏23
𝑎31 𝑏31 𝑎32 𝑏32 𝑎33 𝑏33

⎤⎦ .

1.25.3 Dot product

The dot product for two vectors to generate scalar value.

𝑎 · 𝑏 =

𝑛∑︁
𝑖=1

𝑎𝑖𝑏𝑖 = 𝑎1𝑏1 + 𝑎2𝑏2 + · · ·+ 𝑎𝑛𝑏𝑛

1.25.4 Identity and Inverse Matrices

Identity Matrix

An identity matrix is a matrix that does not change any vector when we multiply that vector by that matrix.

𝐼 =

⎡⎢⎢⎢⎢⎣
1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎦
188 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

When ‘apply’ the identity matrix to a vector the result is this same vector:

𝐼 · 𝑣 = 𝑣⎡⎢⎢⎢⎢⎣
1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎦×
⎡⎢⎢⎢⎢⎣
𝑥1

𝑥2

𝑥3

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
1× 𝑥1 + 0× 𝑥2 + 0× 𝑥3

0× 𝑥1 + 1× 𝑥2 + 0× 𝑥3

0× 𝑥1 + 0× 𝑥2 + 1× 𝑥3

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
𝑥1

𝑥2

𝑥3

⎤⎥⎥⎥⎥⎦

Inverse Matrix

The inverse of a matrix 𝐴 is written as 𝐴−1.

𝐴−1𝐴 = 𝐼𝑛

A matrix 𝐴 is invertible if and only if there exists a matrix 𝐵 such that 𝐴𝐵 = 𝐵𝐴 = 𝐼 .

The inverse can be found using:

• Gaussian elimination

• LU decomposition

• Gauss-Jordan elimination

Singular Matrix

A square matrix that is not invertible is called singular or degenerate. A square matrix is singular if and only if its
determinant is zero

1.25.5 Norm

Norm is function which measure the size of vector.

• Norms are non-negative values. If you think of the norms as a length, you easily see why it can’t be negative.

• Norms are 0 if and only if the vector is a zero vector

• The triangle inequality** 𝑢 + 𝑣 ≤ 𝑢 + 𝑣

The norm is what is generally used to evaluate the error of a model.

Example

𝑢 =
[︀
1 6

]︀
𝑣 =

[︀
4 2

]︀
𝑢 + 𝑣 =

√︀
(1 + 4)2 + (6 + 2)2 =

√
89 ≈ 9.43

𝑢 + 𝑣 =
√︀

12 + 62 +
√︀

42 + 22 =
√

37 +
√

20 ≈ 10.55

The p-norm (also called ℓ𝑝) of vector x. Let p 1 be a real number.

‖𝑥‖𝑝 :=

(︃
𝑛∑︁

𝑖=1

|𝑥𝑖|𝑝
)︃1/𝑝

‖𝑥‖𝑝 = (|𝑥1|𝑝 + |𝑥2|𝑝 + · · ·+ |𝑥𝑛|𝑝)
1/𝑝

1.25. Linear Algebra 189

ml_notes.akkefa.com, Release 0.0.1

• L1 norm, Where p = 1 ‖𝑥‖1 =
∑︀𝑛

𝑖=1 |𝑥𝑖|

• L2 norm and euclidean norm, Where p = 2 ‖𝑥‖2 =
√︀∑︀𝑛

𝑖=1 𝑥
2
𝑖

• L-max norm, Where p = infinity

𝑢 =

⎡⎣3

4

⎤⎦
𝑢 =

√︀
|3|2 + |4|2 =

√
25 = 5

Frobenius norm

Sometimes we may also wish to measure the size of a matrix. In the context of deep learning, the most common way
to do this is with the Frobenius norm.

The Frobenius norm is the square root of the sum of the squares of all the elements of a matrix.

‖𝐴‖𝐹 =

⎯⎸⎸⎷ 𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝐴2
𝑖𝑗

‖𝐴‖F =

⎯⎸⎸⎷ 𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

|𝑎𝑖𝑗 |2

The squared Euclidean norm

The squared L^2 norm is convenient because it removes the square root and we end up with the simple sum of every
squared values of the vector.

The squared Euclidean norm is widely used in machine learning partly because it can be calculated with the vector
operation 𝑥𝑇𝑥. There can be performance gain due to the optimization

𝑥 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2

5

3

3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑥𝑇 =

[︀
2 5 3 3

]︀

𝑥𝑇𝑥 =
[︀
2 5 3 3

]︀
×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2

5

3

3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 2× 2 + 5× 5 + 3× 3 + 3× 3 = 47

190 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

1.25.6 The Trace Operator

The sum of the elements along the main diagonal of a square matrix.

Tr(𝐴) =

𝑛∑︁
𝑖=1

𝑎𝑖𝑖 = 𝑎11 + 𝑎22 + · · ·+ 𝑎𝑛𝑛

𝐴 =

⎡⎢⎢⎢⎢⎣
2 9 8

4 7 1

8 2 5

⎤⎥⎥⎥⎥⎦
Tr(𝐴) = 2 + 7 + 5 = 14

Satisfies the following properties:

tr(𝐴) = tr(𝐴𝑇)

tr(𝐴 + 𝐵) = tr(𝐴) + tr(𝐵)

tr(𝑐𝐴) = 𝑐tr(𝐴)

1.25.7 Transpose

(𝐴𝑇)𝑖𝑗 = 𝐴𝑗𝑖

Satisfies the following properties:

(𝐴 + 𝐵)𝑇 = 𝐴𝑇 + 𝐵𝑇 (𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇 (𝐴𝑇)−1 = (𝐴−1)𝑇

1.25.8 Diagonal matrix

A matrix where 𝐴𝑖𝑗 = 0 if 𝑖 ̸= 𝑗.

Can be written as diag(𝑎) where 𝑎 is a vector of values specifying the diagonal entries.

Diagonal matrices have the following properties:

diag(𝑎) + diag(𝑏) = diag(𝑎 + 𝑏)

diag(𝑎) · diag(𝑏) = diag(𝑎 * 𝑏)
diag(𝑎)−1 = diag(𝑎−1

1 , ..., 𝑎−1
𝑛)

det(diag(𝑎)) =
∏︁
𝑖

𝑎𝑖

Example ⎡⎢⎢⎣
1 0 0
0 4 0
0 0 −3
0 0 0

⎤⎥⎥⎦ 𝑜𝑟

⎡⎣1 0 0 0 0
0 4 0 0 0
0 0 −3 0 0

⎤⎦
The eigenvalues of a diagonal matrix are the set of its values on the diagonal.

1.25. Linear Algebra 191

ml_notes.akkefa.com, Release 0.0.1

1.25.9 Symmetric matrix

A square matrix 𝐴 where 𝐴 = 𝐴𝑇 . ⎡⎣1 7 3
7 4 5
3 5 0

⎤⎦ = 𝐴𝑇 = 𝐴

Some properties of symmetric matrices are:

• All the eigenvalues of the matrix are real.

1.25.10 Unit Vector

A unit vector has unit Euclidean norm.

‖𝑥‖2 :=
√︁
𝑥2
1 + · · ·+ 𝑥2

𝑛 = 1⎡⎣1
0
0

⎤⎦ =
√︀

12 + 02 + 02 = 1

1.25.11 Orthogonal Matrix or Orthonormal Vectors

Orthogonal Vectors

Two vector x and y are orthogonal if they are perpendicular to each other or dot product is equal to zero.

𝑥 =

⎡⎣2

2

⎤⎦
𝑦 =

⎡⎣ 2

−2

⎤⎦
𝑥𝑇 𝑦 =

[︀
2 2

]︀ ⎡⎣ 2

−2

⎤⎦ =
[︀
2× 2 + 2×−2

]︀
= 0

Orthonormal Vectors

when the norm of orthogonal vectors is the unit norm they are called orthonormal.

Orthonormal Matrix

Orthogonal matrices are important because they have interesting properties. A matrix is orthogonal if columns are
mutually orthogonal and have a unit norm (orthonormal) and rows are mutually orthonormal and have unit norm.

An orthogonal matrix is a square matrix whose columns and rows are orthonormal vectors.

𝐴T𝐴 = 𝐴𝐴T = 𝐼

𝐴T = 𝐴−1

192 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

where AT is the transpose of A and I is the identity matrix. This leads to the equivalent characterization: matrix A is
orthogonal if its transpose is equal to its inverse.

so orthogonal matrices are of interest because their inverse is very cheap to compute.

Property 1

A orthogonal matrix has this property: 𝐴𝑇𝐴 = 𝐼 .

𝐴 =

⎡⎣𝑎 𝑏

𝑐 𝑑

⎤⎦𝐴𝑇 =

⎡⎣𝑎 𝑐

𝑏 𝑑

⎤⎦
𝐴𝑇𝐴 =

⎡⎣𝑎 𝑐

𝑏 𝑑

⎤⎦⎡⎣𝑎 𝑏

𝑐 𝑑

⎤⎦ =

⎡⎣𝑎𝑎 + 𝑐𝑐 𝑎𝑏 + 𝑐𝑑

𝑎𝑏 + 𝑐𝑑 𝑏𝑏 + 𝑑𝑑

⎤⎦

=

⎡⎣𝑎2 + 𝑐2 𝑎𝑏 + 𝑐𝑑

𝑎𝑏 + 𝑐𝑑 𝑏2 + 𝑑2

⎤⎦
𝐴𝑇𝐴 =

⎡⎣ 1 𝑎𝑏 + 𝑐𝑑

𝑎𝑏 + 𝑐𝑑 1

⎤⎦
[︀
𝑎 𝑐

]︀ ⎡⎣𝑏
𝑑

⎤⎦ = 𝑎𝑏 + 𝑐𝑑

[︀
𝑎 𝑐

]︀ ⎡⎣𝑏
𝑑

⎤⎦ = 0

𝐴𝑇𝐴 =

⎡⎣1 0

0 1

⎤⎦
that the norm of the vector

[︀
𝑎 𝑐

]︀
is equal to 𝑎2 + 𝑐2 (squared L^2). In addtion, we saw that the rows of A have a unit

norm because A is orthogonal. This means that 𝑎2 + 𝑐2 = 1 and 𝑏2 + 𝑑2 = 1.

Property 2

We can show that if 𝐴𝑇𝐴 = 𝐼 then 𝐴𝑇 = 𝐴−1

(𝐴𝑇𝐴)𝐴−1 = 𝐼𝐴−1

(𝐴𝑇𝐴)𝐴−1 = 𝐴−1

𝐴𝑇𝐴𝐴−1 = 𝐴−1

𝐴𝑇 𝐼 = 𝐴−1

𝐴𝑇 = 𝐴−1

You can refer to [this question](https://math.stackexchange.com/questions/1936020/
why-is-the-inverse-of-an-orthogonal-matrix-equal-to-its-transpose).

Sine and cosine are convenient to create orthogonal matrices. Let’s take the following matrix:

𝐴 =

⎡⎣𝑐𝑜𝑠(50) −𝑠𝑖𝑛(50)

𝑠𝑖𝑛(50) 𝑐𝑜𝑠(50)

⎤⎦

1.25. Linear Algebra 193

https://math.stackexchange.com/questions/1936020/why-is-the-inverse-of-an-orthogonal-matrix-equal-to-its-transpose
https://math.stackexchange.com/questions/1936020/why-is-the-inverse-of-an-orthogonal-matrix-equal-to-its-transpose

ml_notes.akkefa.com, Release 0.0.1

1.25.12 Eigendecomposition

The eigendecomposition is one form of matrix decomposition (only square matrices). Decomposing a matrix means
that we want to find a product of matrices that is equal to the initial matrix. In the case of the eigendecomposition, we
decompose the initial matrix into the product of its eigenvectors and eigenvalues.

𝐴𝑣 = 𝜆𝑣

Eigenvectors and eigenvalues

Now imagine that the transformation of the initial vector gives us a new vector that has the exact same direction. The
scale can be different but the direction is the same. Applying the matrix didn’t change the direction of the vector.
This special vector is called an eigenvector of the matrix. We will see that finding the eigenvectors of a matrix can be
very useful. Imagine that the transformation of the initial vector by the matrix gives a new vector with the exact same
direction. This vector is called an eigenvector of . This means that is a eigenvector of if and are in the same direction
or to rephrase it if the vectors and are parallel. The output vector is just a scaled version of the input vector. This
scalling factor is which is called the eigenvalue of .

𝐴 =

⎡⎣5 1

3 3

⎤⎦
𝑣 =

⎡⎣1

1

⎤⎦
𝐴𝑣 = 𝜆𝑣⎡⎣5 1

3 3

⎤⎦⎡⎣1

1

⎤⎦ =

⎡⎣6

6

⎤⎦
6×

⎡⎣1

1

⎤⎦ =

⎡⎣6

6

⎤⎦
which means that v is well an eigenvector of A. Also, the corresponding eigenvalue is lambda=6.

Another eigenvector of is

𝑣 =

⎡⎣ 1

−3

⎤⎦
⎡⎣5 1

3 3

⎤⎦⎡⎣ 1

−3

⎤⎦ =

⎡⎣ 2

−6

⎤⎦
2×

⎡⎣ 1

−3

⎤⎦ =

⎡⎣ 2

−6

⎤⎦
which means that v is an eigenvector of A. Also, the corresponding eigenvalue is lambda=2.

Rescaled vectors if v is an eigenvector of A, then any rescaled vector sv is also an eigenvector of A. The eigenvalue of

194 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

the rescaled vector is the same.

3𝑣 =

⎡⎣ 3

−9

⎤⎦
⎡⎣5 1

3 3

⎤⎦⎡⎣ 3

−9

⎤⎦ =

⎡⎣ 6

−18

⎤⎦ = 2×

⎡⎣ 3

−9

⎤⎦
We have well A X 3v = lambda v and the eigenvalue is still lambda = 2 .

Concatenating eigenvalues and eigenvectors

Now that we have an idea of what eigenvectors and eigenvalues are we can see how it can be used to decompose a matrix.
All eigenvectors of a matrix can be concatenated in a matrix with each column corresponding to each eigenvector.

𝑣 =

⎡⎣1 1

1 −3

⎤⎦
The first column [1 1] is the eigenvector of with lambda=6 and the second column [1 -3] with lambda=2.

The vector 𝜆 can be created from all eigenvalues:

𝜆 =

⎡⎣6

2

⎤⎦
Then the eigendecomposition is given by

𝐴 = 𝑉 · 𝑑𝑖𝑎𝑔(𝜆) · 𝑉 −1

Converting eigenvalues and eigenvectors to a matrix A.

𝑉 −1 =

⎡⎣0.75 0.25

0.25 −0.25

⎤⎦
𝑉 · 𝑑𝑖𝑎𝑔(𝜆) · 𝑉 −1

=

⎡⎣1 1

1 −3

⎤⎦⎡⎣6 0

0 2

⎤⎦⎡⎣0.75 0.25

0.25 −0.25

⎤⎦
⎡⎣1 1

1 −3

⎤⎦⎡⎣6 0

0 2

⎤⎦ =

⎡⎣6 2

6 −6

⎤⎦
⎡⎣6 2

6 −6

⎤⎦⎡⎣0.75 0.25

0.25 −0.25

⎤⎦

=

⎡⎣ 6× 0.75 + (2× 0.25) 6× 0.25 + (2×−0.25)

6× 0.75 + (−6× 0.25) 6× 0.25 + (−6×−0.25)

⎤⎦

=

⎡⎣5 1

3 3

⎤⎦ = 𝐴

1.25. Linear Algebra 195

ml_notes.akkefa.com, Release 0.0.1

Real symmetric matrix

In the case of real symmetric matrices, the eigendecomposition can be expressed as

𝐴 = 𝑄Λ𝑄𝑇

where 𝑄 is the matrix with eigenvectors as columns and Λ is 𝑑𝑖𝑎𝑔(𝜆).

𝐴 =

⎡⎣6 2

2 3

⎤⎦
This matrix is symmetric because 𝐴 = 𝐴𝑇 . Its eigenvectors are:

𝑄 =

⎡⎣0.89442719 −0.4472136

0.4472136 0.89442719

⎤⎦
Λ =

⎡⎣7 0

0 2

⎤⎦
𝑄Λ =

⎡⎣0.89442719 −0.4472136

0.4472136 0.89442719

⎤⎦⎡⎣7 0

0 2

⎤⎦

=

⎡⎣0.89442719× 7 −0.4472136× 2

0.4472136× 7 0.89442719× 2

⎤⎦

=

⎡⎣6.26099033 −0.8944272

3.1304952 1.78885438

⎤⎦
𝑄𝑇 =

⎡⎣0.89442719 0.4472136

−0.4472136 0.89442719

⎤⎦
𝑄Λ𝑄𝑇 =

⎡⎣6.26099033 −0.8944272

3.1304952 1.78885438

⎤⎦⎡⎣0.89442719 0.4472136

−0.4472136 0.89442719

⎤⎦

=

⎡⎣6 2

2 3

⎤⎦

1.25.13 Singular Value Decomposition

The eigendecomposition can be done only for square matrices. The way to go to decompose other types of matrices
that can’t be decomposed with eigendecomposition is to use Singular Value Decomposition (SVD).

SVD decompose into 3 matrices.

𝐴 = 𝑈𝐷𝑉 𝑇

U,D,V where U is a matrix with eigenvectors as columns and D is a diagonal matrix with eigenvalues on the diagonal
and V is the transpose of U.

196 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

The matrices U,D,V have the following properties:

• U and V are orthogonal matrices U^T=U^{-1} and V^T=V^{-1}

• D is a diagonal matrix However D is not necessarily square.

• The columns of U are called the left-singular vectors of A while the columns of V are the right-singular vectors
of A.The values along the diagonal of D are the singular values of A.

Intuition

I think that the intuition behind the singular value decomposition needs some explanations about the idea of matrix
transformation. For that reason, here are several examples showing how the space can be transformed by 2D square
matrices. Hopefully, this will lead to a better understanding of this statement: is a matrix that can be seen as a linear
transformation. This transformation can be decomposed in three sub-transformations: 1. rotation, 2. re-scaling, 3.
rotation. These three steps correspond to the three matrices , , and .

SVD and eigendecomposition

Now that we understand the kind of decomposition done with the SVD, we want to know how the sub-transformations
are found. The matrices , and can be found by transforming in a square matrix and by computing the eigenvectors of
this square matrix. The square matrix can be obtain by multiplying the matrix by its transpose in one way or the other:

corresponds to the eigenvectors of ^T corresponds to the eigenvectors of ^T corresponds to the eigenvalues ^T or ^T
which are the same.

1.25.14 The Moore-Penrose Pseudoinverse

We saw that not all matrices have an inverse because the inverse is used to solve system of equations. The Moore-
Penrose pseudoinverse is a direct application of the SVD. the inverse of a matrix A can be used to solve the equation
Ax=b.

𝐴−1𝐴𝑥 = 𝐴−1𝑏𝐼𝑛𝑥 = 𝐴−1𝑏𝑥 = 𝐴−1𝑏

But in the case where the set of equations have 0 or many solutions the inverse cannot be found and the equation cannot
be solved. The pseudoinverse is 𝐴+ where 𝐴+ is the pseudoinverse of 𝐴.

𝐴𝐴+ ≈ 𝐼𝑛

||𝐴𝐴+ − 𝐼𝑛||

The following formula can be used to find the pseudoinverse:

𝐴+ = 𝑉 𝐷+𝑈𝑇

1.25.15 Principal Components Analysis (PCA)

The aim of principal components analysis (PCA) is generaly to reduce the number of dimensions of a dataset where
dimensions are not completely decorelated.

1.25. Linear Algebra 197

ml_notes.akkefa.com, Release 0.0.1

Describing the problem

The problem can be expressed as finding a function that converts a set of data points from to . This means that we
change the number of dimensions of our dataset. We also need a function that can decode back from the transformed
dataset to the initial one.

The first step is to understand the shape of the data. () is one data point containing dimensions. Let’s have data points
organized as column vectors (one column per point):

𝑥 =
[︀
𝑥(1)𝑥(2) · · ·𝑥(𝑚)

]︀
If we deploy the n dimensions of our data points we will have:

𝑥 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥
(1)
1 𝑥

(2)
1 · · · 𝑥

(𝑚)
1

𝑥
(1)
2 𝑥

(2)
2 · · · 𝑥

(𝑚)
2

· · · · · · · · · · · ·

𝑥
(1)
𝑛 𝑥

(2)
𝑛 · · · 𝑥

(𝑚)
𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We can also write:

𝑥 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1

𝑥2

· · ·

𝑥𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
c will have the shape:

𝑐 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1

𝑐2

· · ·

𝑐𝑙

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

198 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Adding some constraints: the decoding function

The encoding function f(x) transforms x into c and the decoding function transforms back c into an approximation of
x. To keep things simple, PCA will respect some constraints:

Constraint 1

The decoding function has to be a simple matrix multiplication:

$$g(c)=Dc$$

By applying the matrix D to the dataset from the new coordinates system we should get back to the initial coordinate
system.

Constraint 2

The columns of D must be orthogonal.

Constraint 3

The columns of D must have unit norm.

Finding the encoding function

For now we will consider only one data point. Thus we will have the following dimensions for these matrices (note
that x and c are column vectors)

We want a decoding function which is a simple matrix multiplication. For that reason, we have g(c)=Dc.

We will then find the encoding function from the decoding function. We want to minimize the error between the
decoded data point and the actual data point.

1.25. Linear Algebra 199

ml_notes.akkefa.com, Release 0.0.1

With our previous notation, this means reducing the distance between x and g(c). As an indicator of this distance, we
will use the squared L^2 norm.

||𝑥− 𝑔(𝑐)||22

This is what we want to minimize. Let’s call 𝑐* the optimal c. Mathematically it can be written:

$$ c^* = argmin ||x-g(c)||_2^2 $$

This means that we want to find the values of the vector c such that ||𝑥− 𝑔(𝑐)||22 is as small as possible.

the squared 𝐿2 norm can be expressed as:

$$ ||y||_2^2 = y^Ty $$

We have named the variable y to avoid confusion with our x. Here 𝑦 = 𝑥 − 𝑔(𝑐) Thus the equation that we want to
minimize becomes:

$$ (x - g(c))^T(x - g(c)) $$

Since the transpose respects addition we have:

$$ (x^T - g(c)^T)(x - g(c)) $$

By the distributive property we can develop:

$$ x^Tx - x^Tg(c) - g(c)^Tx + g(c)^Tg(c) $$

The commutative property tells us that 𝑥𝑇 𝑦 = 𝑦𝑇𝑥. We can use that in the previous equation: we have 𝑔(𝑐)𝑇𝑥 =
𝑥𝑇 𝑔(𝑐). So the equation becomes:

$$ x^Tx -x^Tg(c) -x^Tg(c) + g(c)^Tg(c) = x^Tx -2x^Tg(c) + g(c)^Tg(c) $$

The first term 𝑥𝑇𝑥 does not depends on c and since we want to minimize the function according to c we can just get
off this term. We simplify to:

$$ c^* = arg min -2x^T g(c) + g(c)^T g(c) $$

Since 𝑔(𝑐) = 𝐷𝑐:

$$ c^* = arg min -2x^T Dc + (Dc)^T Dc $$

With (𝐷𝑐)𝑇 = 𝑐𝑇𝐷𝑇 , we have:

$$ c^* = arg min -2x^T Dc + c^T D^T Dc $$

As we knew, 𝐷𝑇𝐷 = 𝐼𝑙 because D is orthogonal. and their columns have unit norm. We can replace in the equation:

$$ c^* = arg min -2x^T Dc + c^T I_l c $$

$$ c^* = arg min -2x^T Dc + c^T c $$

Minimizing the function

Now the goal is to find the minimum of the function 2T+T. One widely used way of doing that is to use the gradient
descent algorithm. The main idea is that the sign of the derivative of the function at a specific value of tells you if you
need to increase or decrease to reach the minimum. When the slope is near 0 , the minimum should have been reached.

Its mathematical notation is ().

Here we want to minimize through each dimension of c. We are looking for a slope of 0.

200 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

1.26 Statistics

1.26.1 Mean, Variance and Standard Deviation

Mean

The mean of a vector, usually denoted as 𝜇 , is the mean of its elements, that is to say the sum of the components
divided by the number of components

�̄� = 𝜇 =
1

𝑛

𝑛∑︁
𝑖=1

𝑥𝑖

Variance

The variance is the mean of the squared differences to the mean.

𝑣𝑎𝑟(𝑥) =
1

𝑛

𝑛∑︁
𝑖=1

(𝑥𝑖 − �̄�)2

with 𝑣𝑎𝑟(𝑥) being the variance of the variable 𝑥, 𝑛 the number of data samples, 𝑥𝑖 the ith data sample and �̄� the mean
of 𝑥.

Standard Deviation

The standard deviation is simply the square root of the variance. It is usually denoted as 𝜎:

𝜎(𝑥) =

⎯⎸⎸⎷ 1

𝑛

𝑛∑︁
𝑖=1

(𝑥𝑖 − �̄�)2

We square root the variance to go back to the units of the observations.

Both the variance and the standard deviation are dispersion indicators: they tell you if the observations are clustered
around the mean.

Note also that the variance and the standard deviation are always positive (it is like a distance, measuring how far away
the data points are from the mean):

𝑣𝑎𝑟(𝑥) ≥ 0

𝜎(𝑥) ≥ 0

1.26.2 Covariance and Correlation

𝑐𝑜𝑣(𝑥, 𝑦) =
1

𝑛

𝑛∑︁
𝑖=1

(𝑥𝑖 − �̄�)(𝑦𝑖 − 𝑦)

1.26. Statistics 201

ml_notes.akkefa.com, Release 0.0.1

Correlation

The correlation, usually refering to the Pearson’s correlation coefficient, is a normalized version of the covariance. It
is scaled between -1 and 1

𝑐𝑜𝑟𝑟(𝑥, 𝑦) =
𝑐𝑜𝑣(𝑥, 𝑦)

𝜎𝑥𝜎𝑦

1.27 Sorting Algorithms

1.27.1 Insertion Sort

Insertion sort is a simple sorting algorithm that works similar to the way you sort playing cards in your hands. The
array is virtually split into a sorted and an unsorted part. Values from the unsorted part are picked and placed at the
correct position in the sorted part.

Characteristics of Insertion Sort

• This algorithm is one of the simplest algorithm with simple implementation

• Basically, Insertion sort is efficient for small data values

• Insertion sort is adaptive in nature, i.e. it is appropriate for data sets which are already partially sorted.

https://www.swtestacademy.com/wp-content/uploads/2021/11/insertion-sort.gif

202 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Implmentation

procedure insertionSort(A: list of sortable items)
n = length(A)
for i = 1 to n - 1 do

j = i
while j > 0 and A[j-1] > A[j] do

swap(A[j], A[j-1])
j = j - 1

end while
end for

end procedure

def insertion_sort(data: list):

print(f"Unsorted List: {data}")

for i in range(1, len(data)):
print("===" * 10)
print(f"Iteration: {i} & Current Element: {data[i]}")

key = data[i]
Move elements of arr[0..i-1], that are
greater than key, to one position ahead
of their current position
j = i-1

while j >= 0 and key < data[j] :
print(f"j = {j}")
print(f"Swapping {data[j]} with {data[j + 1]}")
data[j + 1] = data[j]
j -= 1
print(f"Swapped List: {data}")

print(f"Inserting {key} at position {j + 1}")
data[j + 1] = key
print(f"New List: {data}")
print("===" * 10)

return data

insertion_sort([12, 11, 13, 5, 6])

print("####" * 10)

insertion_sort([6, 11, 6, 44, 6,7,9,22,0])

This code is contributed by Mohit Kumra

Unsorted List: [12, 11, 13, 5, 6]
==============================
Iteration: 1 & Current Element: 11

(continues on next page)

1.27. Sorting Algorithms 203

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

j = 0
Swapping 12 with 11
Swapped List: [12, 12, 13, 5, 6]
Inserting 11 at position 0
New List: [11, 12, 13, 5, 6]
==============================
==============================
Iteration: 2 & Current Element: 13
Inserting 13 at position 2
New List: [11, 12, 13, 5, 6]
==============================
==============================
Iteration: 3 & Current Element: 5
j = 2
Swapping 13 with 5
Swapped List: [11, 12, 13, 13, 6]
j = 1
Swapping 12 with 13
Swapped List: [11, 12, 12, 13, 6]
j = 0
Swapping 11 with 12
Swapped List: [11, 11, 12, 13, 6]
Inserting 5 at position 0
New List: [5, 11, 12, 13, 6]
==============================
==============================
Iteration: 4 & Current Element: 6
j = 3
Swapping 13 with 6
Swapped List: [5, 11, 12, 13, 13]
j = 2
Swapping 12 with 13
Swapped List: [5, 11, 12, 12, 13]
j = 1
Swapping 11 with 12
Swapped List: [5, 11, 11, 12, 13]
Inserting 6 at position 1
New List: [5, 6, 11, 12, 13]
==============================
##
Unsorted List: [6, 11, 6, 44, 6, 7, 9, 22, 0]
==============================
Iteration: 1 & Current Element: 11
Inserting 11 at position 1
New List: [6, 11, 6, 44, 6, 7, 9, 22, 0]
==============================
==============================
Iteration: 2 & Current Element: 6
j = 1
Swapping 11 with 6
Swapped List: [6, 11, 11, 44, 6, 7, 9, 22, 0]
Inserting 6 at position 1

(continues on next page)

204 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

New List: [6, 6, 11, 44, 6, 7, 9, 22, 0]
==============================
==============================
Iteration: 3 & Current Element: 44
Inserting 44 at position 3
New List: [6, 6, 11, 44, 6, 7, 9, 22, 0]
==============================
==============================
Iteration: 4 & Current Element: 6
j = 3
Swapping 44 with 6
Swapped List: [6, 6, 11, 44, 44, 7, 9, 22, 0]
j = 2
Swapping 11 with 44
Swapped List: [6, 6, 11, 11, 44, 7, 9, 22, 0]
Inserting 6 at position 2
New List: [6, 6, 6, 11, 44, 7, 9, 22, 0]
==============================
==============================
Iteration: 5 & Current Element: 7
j = 4
Swapping 44 with 7
Swapped List: [6, 6, 6, 11, 44, 44, 9, 22, 0]
j = 3
Swapping 11 with 44
Swapped List: [6, 6, 6, 11, 11, 44, 9, 22, 0]
Inserting 7 at position 3
New List: [6, 6, 6, 7, 11, 44, 9, 22, 0]
==============================
==============================
Iteration: 6 & Current Element: 9
j = 5
Swapping 44 with 9
Swapped List: [6, 6, 6, 7, 11, 44, 44, 22, 0]
j = 4
Swapping 11 with 44
Swapped List: [6, 6, 6, 7, 11, 11, 44, 22, 0]
Inserting 9 at position 4
New List: [6, 6, 6, 7, 9, 11, 44, 22, 0]
==============================
==============================
Iteration: 7 & Current Element: 22
j = 6
Swapping 44 with 22
Swapped List: [6, 6, 6, 7, 9, 11, 44, 44, 0]
Inserting 22 at position 6
New List: [6, 6, 6, 7, 9, 11, 22, 44, 0]
==============================
==============================
Iteration: 8 & Current Element: 0
j = 7
Swapping 44 with 0

(continues on next page)

1.27. Sorting Algorithms 205

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

Swapped List: [6, 6, 6, 7, 9, 11, 22, 44, 44]
j = 6
Swapping 22 with 44
Swapped List: [6, 6, 6, 7, 9, 11, 22, 22, 44]
j = 5
Swapping 11 with 22
Swapped List: [6, 6, 6, 7, 9, 11, 11, 22, 44]
j = 4
Swapping 9 with 11
Swapped List: [6, 6, 6, 7, 9, 9, 11, 22, 44]
j = 3
Swapping 7 with 9
Swapped List: [6, 6, 6, 7, 7, 9, 11, 22, 44]
j = 2
Swapping 6 with 7
Swapped List: [6, 6, 6, 6, 7, 9, 11, 22, 44]
j = 1
Swapping 6 with 6
Swapped List: [6, 6, 6, 6, 7, 9, 11, 22, 44]
j = 0
Swapping 6 with 6
Swapped List: [6, 6, 6, 6, 7, 9, 11, 22, 44]
Inserting 0 at position 0
New List: [0, 6, 6, 6, 7, 9, 11, 22, 44]
==============================

[0, 6, 6, 6, 7, 9, 11, 22, 44]

1.27.2 Merge sort

Merge sort is a sorting algorithm that works by dividing an array into smaller subarrays, sorting each subarray, and
then merging the sorted subarrays back together to form the final sorted array.

In simple terms, we can say that the process of merge sort is to divide the array into two halves, sort each half, and then
merge the sorted halves back together. This process is repeated until the entire array is sorted.

The “Merge Sort” uses a recursive algorithm to achieve its results.

Advantages of the Merge Sort

• Merge sort can efficiently sort a list in O(n*log(n)) time.

• Merge sort can be used with linked lists without taking up any more space.

• A merge sort algorithm is used to count the number of inversions in the list.

• Merge sort is employed in external sorting.

206 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Drawbacks of the Merge Sort

• For small datasets, merge sort is slower than other sorting algorithms.

• For the temporary array, mergesort requires an additional space of O(n).

• Even if the array is sorted, the merge sort goes through the entire process.

Python implementation of MergeSort

def mergeSort(arr):
if len(arr) > 1:

Finding the mid of the array
mid = len(arr)//2

Dividing the array elements
L = arr[:mid]

into 2 halves
R = arr[mid:]

Sorting the first half
mergeSort(L)

Sorting the second half
mergeSort(R)

i = j = k = 0

Copy data to temp arrays L[] and R[]
while i < len(L) and j < len(R):

if L[i] <= R[j]:
arr[k] = L[i]
i += 1

else:
arr[k] = R[j]
j += 1

k += 1

Checking if any element was left
while i < len(L):

arr[k] = L[i]
i += 1
k += 1

while j < len(R):
arr[k] = R[j]
j += 1
k += 1

arr = [12, 11, 13, 5, 6, 7]
print(arr)

(continues on next page)

1.27. Sorting Algorithms 207

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

mergeSort(arr)
print(arr)

[12, 11, 13, 5, 6, 7]
[5, 6, 7, 11, 12, 13]

1.27.3 Binary Search

Binary Search is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The
idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(Log n).

https://blog.penjee.com/wp-content/uploads/2015/04/binary-and-linear-search-animations.gif

python Implmentation of Binary Search

def binarySearchHelper(lst, elt, left, right):
n = len(lst)
if (left > right):

return None # Search region is empty -- let us bail since we cannot find the␣
→˓element elt in the list.
else:

If elt exists in the list, it must be between left and right indices.
mid = (left + right)//2 # Note that // is integer division
if lst[mid] == elt:

return mid # BINGO -- we found it. Return its index signalling that we found␣
→˓it.

elif lst[mid] < elt:
We search in the right part of the list
return binarySearchHelper(lst, elt, mid+1, right)

else: # lst[mid] > elt
We search in the left part of the list.
return binarySearchHelper(lst, elt, left, mid-1)

def binarySearch(lst, elt):
n = len(lst)
if (elt < lst[0] or elt > lst[n-1]):

return None
else: # Note: we will only get here if

lst[0] <= elt <= lst[n-1]
return binarySearchHelper(lst, elt, 0, n-1)

print("Searching for 9 in list [0,2,3,4,6,9,12]")
print(binarySearch([0,2,3,4,6,9,12], 9))

print("Searching for 8 in list [1, 3, 4, 6, 8, 9,10, 11, 12, 15]")
print(binarySearch([1, 3, 4, 6, 8, 9,10, 11, 12, 15], 8))

print("Searching for 5 in list [1, 3, 4, 6, 8, 9,10, 11, 12, 15]")
print(binarySearch([1, 3, 4, 6, 8, 9,10, 11, 12, 15], 5))

(continues on next page)

208 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

print("Searching for 0 in list [0,2]")
print(binarySearch([0,2], 0))

print("Searching for 1 in list [0,2]")
print(binarySearch([0,2], 1))

print("Searching for 2 in list [0,2]")
print(binarySearch([0,2], 2))

print("Searching for 1 in list [1]")
print(binarySearch([1], 1))

print("Searching for 2 in list [1]")
print(binarySearch([1], 2))

Searching for 9 in list [0,2,3,4,6,9,12]
5
Searching for 8 in list [1, 3, 4, 6, 8, 9,10, 11, 12, 15]
4
Searching for 5 in list [1, 3, 4, 6, 8, 9,10, 11, 12, 15]
None
Searching for 0 in list [0,2]
0
Searching for 1 in list [0,2]
None
Searching for 2 in list [0,2]
1
Searching for 1 in list [1]
0
Searching for 2 in list [1]
None

1.28 Graphs Data Structure

1.28.1 Binary Search Tree

A Binary Search Tree (BST) is a special type of binary tree in which the left child of a node has a value less than the
node’s value and the right child has a value greater than the node’s value. This property is called the BST property and
it makes it possible to efficiently search, insert, and delete elements in the tree.

In a Binary search tree, the value of left node must be smaller than the parent node, and the value of right node must
be greater than the parent node. This rule is applied recursively to the left and right subtrees of the root.

Left node > Parent node > Right node

1.28. Graphs Data Structure 209

ml_notes.akkefa.com, Release 0.0.1

Advantages of Binary search tree

Searching an element in the Binary search tree is easy as we always have a hint that which subtree has the desired
element.

As compared to array and linked lists, insertion and deletion operations are faster in BST.

class Node:
Implement a node of the binary search tree.
Constructor for a node with key and a given parent
parent can be None for a root node.
def __init__(self, key, parent = None):

self.key = key
self.parent = parent
self.left = None # We will set left and right child to None
self.right = None
Make sure that the parent's left/right pointer
will point to the newly created node.
if parent != None:

if key < parent.key:
assert(parent.left == None), 'parent already has a left child -- unable␣

→˓to create node'
parent.left = self

else:
assert key > parent.key, 'key is same as parent.key. We do not allow␣

→˓duplicate keys in a BST since it breaks some of the algorithms.'
assert(parent.right == None), 'parent already has a right child --␣

→˓unable to create node'
parent.right = self

Utility function that keeps traversing left until it finds
the leftmost descendant
def get_leftmost_descendant(self):

if self.left != None:
return self.left.get_leftmost_descendant()

(continues on next page)

210 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

else:
return self

You can call search recursively on left or right child
as appropriate.
If search succeeds: return a tuple True and the node in the tree
with the key we are searching for.
Also note that if the search fails to find the key
you should return a tuple False and the node which would
be the parent if we were to insert the key subsequently.
def search(self, key):

if self.key == key:
return (True, self)

your code here
if self.key < key and self.right != None:

return self.right.search(key)

if self.key > key and self.left != None:
return self.left.search(key)

return (False, self)

To insert first search for it and find out
the parent whose child the currently inserted key will be.
Create a new node with that key and insert.
return None if key already exists in the tree.
return the new node corresponding to the inserted key otherwise.
def insert(self, key):

your code here
(b, found_node) = self.search(key)
if b is not False:

return None
else:

return Node(key, found_node)

height of a node whose children are both None is defined
to be 1.
height of any other node is 1 + maximum of the height
of its children.
Return a number that is th eheight.
def height(self):

your code here
if self.left is None and self.right is None:

return 1
elif self.left is None:

return 1 + self.right.height()
elif self.right is None:

return 1 + self.left.height()

(continues on next page)

1.28. Graphs Data Structure 211

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

else:
return 1 + max(self.left.height(), self.right.height())

programming.
Case 1: both children of the node are None
-- in this case, deletion is easy: simply find out if the node with key is its
parent's left/right child and set the corr. child to None in the parent node.
Case 2: one of the child is None and the other is not.
-- replace the node with its only child. In other words,
modify the parent of the child to be the to be deleted node's parent.
also change the parent's left/right child appropriately.
Case 3: both children of the parent are not None.
-- first find its successor (go one step right and all the way to the left).
-- function get_leftmost_descendant may be helpful here.
-- replace the key of the node by its successor.
-- delete the successor node.
return: no return value specified

def delete(self, key):
(found, node_to_delete) = self.search(key)
assert(found == True), f"key to be deleted:{key}- does not exist in the tree"
your code here
if node_to_delete.left is None and node_to_delete.right is None:

if node_to_delete.parent.left == node_to_delete:
node_to_delete.parent.left = None

else:
node_to_delete.parent.right = None

elif node_to_delete.left is None:
if node_to_delete.parent.left == node_to_delete:

node_to_delete.parent.left = node_to_delete.right
else:

node_to_delete.parent.right = node_to_delete.right
elif node_to_delete.right is None:

if node_to_delete.parent.left == node_to_delete:
node_to_delete.parent.left = node_to_delete.left

else:
node_to_delete.parent.right = node_to_delete.left

else:
successor = node_to_delete.right.get_leftmost_descendant()
node_to_delete.key = successor.key
successor.delete(successor.key)

t1 = Node(25, None)
t2 = Node(12, t1)
t3 = Node(18, t2)
t4 = Node(40, t1)

print('-- Testing basic node construction (originally provided code) -- ')
assert(t1.left == t2), 'test 1 failed'
assert(t2.parent == t1), 'test 2 failed'
assert(t2.right == t3), 'test 3 failed'

(continues on next page)

212 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

assert (t3.parent == t2), 'test 4 failed'
assert(t1.right == t4), 'test 5 failed'
assert(t4.left == None), 'test 6 failed'
assert(t4.right == None), 'test 7 failed'
The tree should be :
25
/\
12 40
/\
None 18
#

print('-- Testing search -- ')
(b, found_node) = t1.search(18)
assert b and found_node.key == 18, 'test 8 failed'
(b, found_node) = t1.search(25)
assert b and found_node.key == 25, 'test 9 failed -- you should find the node with key␣
→˓25 which is the root'
(b, found_node) = t1.search(26)
assert(not b), 'test 10 failed'
assert(found_node.key == 40), 'test 11 failed -- you should be returning the leaf node␣
→˓which would be the parent to the node you failed to find if it were to be inserted in␣
→˓the tree.'

print('-- Testing insert -- ')
ins_node = t1.insert(26)
assert ins_node.key == 26, ' test 12 failed '
assert ins_node.parent == t4, ' test 13 failed '
assert t4.left == ins_node, ' test 14 failed '

ins_node2 = t1.insert(33)
assert ins_node2.key == 33, 'test 15 failed'
assert ins_node2.parent == ins_node, 'test 16 failed'
assert ins_node.right == ins_node2, 'test 17 failed'

print('-- Testing height -- ')

assert t1.height() == 4, 'test 18 failed'
assert t4.height() == 3, 'test 19 failed'
assert t2.height() == 2, 'test 20 failed'

Testing deletion
t1 = Node(16, None)
insert the nodes in the list
lst = [18,25,10, 14, 8, 22, 17, 12]
for elt in lst:

t1.insert(elt)

The tree should look like this
16
/ \

(continues on next page)

1.28. Graphs Data Structure 213

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

10 18
/ \ / \
8 14 17 25
/ /
12 22

Let us test the three deletion cases.
case 1 let's delete node 8
node 8 does not have left or right children.
t1.delete(8) # should have both children nil.
(b8,n8) = t1.search(8)
assert not b8, 'Test A: deletion fails to delete node.'
(b,n) = t1.search(10)
assert(b) , 'Test B failed: search does not work'
assert n.left == None, 'Test C failed: Node 8 was not properly deleted.'

Let us test deleting the node 14 whose right child is none.
n is still pointing to the node 10 after deleting 8.
let us ensure that it's right child is 14
assert n.right != None, 'Test D failed: node 10 should have right child 14'
assert n.right.key == 14, 'Test E failed: node 10 should have right child 14'

Let's delete node 14
t1.delete(14)
(b14, n14) = t1.search(14)
assert not b14, 'Test F: Deletion of node 14 failed -- it still exists in the tree.'
(b,n) = t1.search(10)
assert n.right != None , 'Test G failed: deletion of node 14 not handled correctly'
assert n.right.key == 12, f'Test H failed: deletion of node 14 not handled correctly: {n.
→˓right.key}'

Let's delete node 18 in the tree.
It should be replaced by 22.

t1.delete(18)
(b18, n18) = t1.search(18)
assert not b18, 'Test I: Deletion of node 18 failed'
assert t1.right.key == 22 , ' Test J: Replacement of node with successor failed.'
assert t1.right.right.left == None, ' Test K: replacement of node with successor failed -
→˓- you did not delete the successor leaf properly?'

-- Testing basic node construction (originally provided code) --
-- Testing search --
-- Testing insert --
-- Testing height --

214 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Height of BST

The height of a Binary Tree is defined as the maximum depth of any leaf node from the root node. That is, it is the
length of the longest path from the root node to any leaf node.

Find in BST

Complexity: O(log n) and O(n) in worst case

Insertion and Deleteion in BST

class Node:
def __init__(self, key):

self.left = None
self.right = None
self.val = key

def insert(root, key):
if root is None:

return Node(key)
else:

if root.val == key:
return root

elif root.val < key:
root.right = insert(root.right, key)

else:
root.left = insert(root.left, key)

return root

def inorder(root):
if root:

inorder(root.left)
print(root.val, end =" ")
inorder(root.right)

if __name__ == '__main__':

Let us create the following BST
(continues on next page)

1.28. Graphs Data Structure 215

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

50
/ \
30 70
/ \ / \
20 40 60 80

r = Node(50)
r = insert(r, 30)
r = insert(r, 20)
r = insert(r, 40)
r = insert(r, 70)
r = insert(r, 60)
r = insert(r, 80)

Print inorder traversal of the BST
inorder(r)

20 30 40 50 60 70 80

Delete a node from BST

Python program to demonstrate delete operation
in binary search tree

A Binary Tree Node

class Node:

Constructor to create a new node
def __init__(self, key):

self.key = key
self.left = None
self.right = None

A utility function to do inorder traversal of BST
def inorder(root):

if root is not None:
inorder(root.left)
print(root.key, end=" ")
inorder(root.right)

A utility function to insert a
new node with given key in BST
def insert(node, key):

If the tree is empty, return a new node
if node is None:

return Node(key)

(continues on next page)

216 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

Otherwise recur down the tree
if key < node.key:

node.left = insert(node.left, key)
else:

node.right = insert(node.right, key)

return the (unchanged) node pointer
return node

Given a non-empty binary
search tree, return the node
with minimum key value
found in that tree. Note that the
entire tree does not need to be searched

def minValueNode(node):
current = node

loop down to find the leftmost leaf
while(current.left is not None):

current = current.left

return current

Given a binary search tree and a key, this function
delete the key and returns the new root

def deleteNode(root, key):

Base Case
if root is None:

return root

If the key to be deleted
is smaller than the root's
key then it lies in left subtree
if key < root.key:

root.left = deleteNode(root.left, key)

If the kye to be delete
is greater than the root's key
then it lies in right subtree
elif(key > root.key):

root.right = deleteNode(root.right, key)

If key is same as root's key, then this is the node
to be deleted
else:

Node with only one child or no child

(continues on next page)

1.28. Graphs Data Structure 217

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

if root.left is None:
temp = root.right
root = None
return temp

elif root.right is None:
temp = root.left
root = None
return temp

Node with two children:
Get the inorder successor
(smallest in the right subtree)
temp = minValueNode(root.right)

Copy the inorder successor's
content to this node
root.key = temp.key

Delete the inorder successor
root.right = deleteNode(root.right, temp.key)

return root

Driver code
""" Let us create following BST

50
/ \
30 70
/ \ / \

20 40 60 80 """

root = None
root = insert(root, 50)
root = insert(root, 30)
root = insert(root, 20)
root = insert(root, 40)
root = insert(root, 70)
root = insert(root, 60)
root = insert(root, 80)

print("Inorder traversal of the given tree")
inorder(root)

print("\nDelete 20")
root = deleteNode(root, 20)
print("Inorder traversal of the modified tree")
inorder(root)

print("\nDelete 30")
root = deleteNode(root, 30)

(continues on next page)

218 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

print("Inorder traversal of the modified tree")
inorder(root)

print("\nDelete 50")
root = deleteNode(root, 50)
print("Inorder traversal of the modified tree")
inorder(root)

This code is contributed by Nikhil Kumar Singh(nickzuck_007)

Inorder traversal of the given tree
20 30 40 50 60 70 80
Delete 20
Inorder traversal of the modified tree
30 40 50 60 70 80
Delete 30
Inorder traversal of the modified tree
40 50 60 70 80
Delete 50
Inorder traversal of the modified tree
40 60 70 80

Traversals – Inorder, Preorder, Post Order

Given a Binary Search Tree, The task is to print the elements in inorder, preorder, and postorder traversal of the Binary
Search Tree.

Inorder Traversal: 10 20 30 100 150 200 300

Preorder Traversal: 100 20 10 30 200 150 300

Postorder Traversal: 10 30 20 150 300 200 100

1.28. Graphs Data Structure 219

ml_notes.akkefa.com, Release 0.0.1

Inorder Traversal:

Traverse left subtree Visit the root and print the data. Traverse the right subtree

class Node:
def __init__(self, v):

self.left = None
self.right = None
self.data = v

Inorder Traversal
def printInorder(root):

if root:
Traverse left subtree
printInorder(root.left)

Visit node
print(root.data,end=" ")

Traverse right subtree
printInorder(root.right)

Driver code
if __name__ == "__main__":

Build the tree
root = Node(100)
root.left = Node(20)
root.right = Node(200)
root.left.left = Node(10)
root.left.right = Node(30)
root.right.left = Node(150)
root.right.right = Node(300)

Function call
print("Inorder Traversal:",end=" ")
printInorder(root)

This code is contributed by ajaymakvana.

Inorder Traversal: 10 20 30 100 150 200 300

Preorder Traversal

At first visit the root then traverse left subtree and then traverse the right subtree.

Follow the below steps to implement the idea:

• Visit the root and print the data.

• Traverse left subtree

• Traverse the right subtree

220 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

class Node:
def __init__(self, v):

self.data = v
self.left = None
self.right = None

Preorder Traversal
def printPreOrder(node):

if node is None:
return

Visit Node
print(node.data, end = " ")

Traverse left subtree
printPreOrder(node.left)

Traverse right subtree
printPreOrder(node.right)

Driver code
if __name__ == "__main__":

Build the tree
root = Node(100)
root.left = Node(20)
root.right = Node(200)
root.left.left = Node(10)
root.left.right = Node(30)
root.right.left = Node(150)
root.right.right = Node(300)

Function call
print("Preorder Traversal: ", end = "")
printPreOrder(root)

Preorder Traversal: 100 20 10 30 200 150 300

Postorder Traversal

At first traverse left subtree then traverse the right subtree and then visit the root.

Follow the below steps to implement the idea:

• Traverse left subtree

• Traverse the right subtree

• Visit the root and print the data.

class Node:
def __init__(self, v):

self.data = v
self.left = None
self.right = None

(continues on next page)

1.28. Graphs Data Structure 221

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

Preorder Traversal
def printPostOrder(node):

if node is None:
return

Traverse left subtree
printPostOrder(node.left)

Traverse right subtree
printPostOrder(node.right)

Visit Node
print(node.data, end = " ")

Driver code
if __name__ == "__main__":

Build the tree
root = Node(100)
root.left = Node(20)
root.right = Node(200)
root.left.left = Node(10)
root.left.right = Node(30)
root.right.left = Node(150)
root.right.right = Node(300)

Function call
print("Postorder Traversal: ", end = "")
printPostOrder(root)

Postorder Traversal: 10 30 20 150 300 200 100

1.28.2 Red-Black Tree

When it comes to searching and sorting data, one of the most fundamental data structures is the binary search tree.
However, the performance of a binary search tree is highly dependent on its shape, and in the worst case, it can degen-
erate into a linear structure with a time complexity of O(n). This is where Red Black Trees come in, they are a type of
balanced binary search tree that use a specific set of rules to ensure that the tree is always balanced. This balance guar-
antees that the time complexity for operations such as insertion, deletion, and searching is always O(log n), regardless
of the initial shape of the tree.

Red Black Trees are self-balancing, meaning that the tree adjusts itself automatically after each insertion or deletion
operation. It uses a simple but powerful mechanism to maintain balance, by coloring each node in the tree either red
or black.

222 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Properties of Red Black Tree

The Red-Black tree satisfies all the properties of binary search tree in addition to that it satisfies following additional
properties –

1. Root property: The root is black.

2. External property: Every leaf (Leaf is a NULL child of a node) is black in Red-Black tree.

3. Internal property: The children of a red node are black. Hence possible parent of red node is a black node.

4. Depth property: All the leaves have the same black depth.

5. Path property: Every simple path from root to descendant leaf node contains same number of black nodes.

The result of all these above-mentioned properties is that the Red-Black tree is roughly balanced.

1.28.3 Graph Data Structure

A graph is a non-linear data structure consisting of nodes and edges. The nodes are sometimes also referred to as
vertices and the edges are lines or arcs that connect any two nodes in the graph. More formally a Graph can be defined
as, a Graph consists of a finite set of vertices(or nodes) and set of Edges which connect a pair of nodes.

In graph theory, a graph is a mathematical structure consisting of a set of objects, called vertices or nodes, and a set of
connections, called edges, which link pairs of vertices. The notation:

𝐺 = (𝑉,𝐸)

is used to represent a graph, where 𝐺 is the graph, 𝑉 is the set of vertices, and
⋁︀

is the set of edges.

The nodes of a graph can represent any objects, such as cities, people, web pages, or molecules, and the edges represent
the relationships or connections between them.

import networkx as nx
import matplotlib.pyplot as plt

G = nx.Graph()
G.add_edges_from([('A', 'B'), ('A', 'C'), ('B', 'D'), ('B', 'E'), ('C', 'F'), ('C', 'G

(continues on next page)

1.28. Graphs Data Structure 223

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

→˓')])

plt.axis('off')
nx.draw_networkx(G,

pos=nx.spring_layout(G, seed=0),
node_size=600,
cmap='coolwarm',
font_size=14,
font_color='white'
)

/home/docs/checkouts/readthedocs.org/user_builds/ml-math/envs/new_rea/lib/python3.11/
→˓site-packages/networkx/drawing/nx_pylab.py:450: UserWarning: No data for colormapping␣
→˓provided via 'c'. Parameters 'cmap' will be ignored
node_collection = ax.scatter(

Terminology

The following are the most commonly used terms in graph theory with respect to graphs:

1. Vertex - A vertex, also called a “node”, is a fundamental part of a graph. In the context of graphs, a vertex is an
object which may contain zero or more items called attributes.

2. Edge - An edge is a connection between two vertices. An edge may contain a weight/value/cost.

3. Path - A path is a sequence of edges connecting a sequence of vertices.

4. Cycle - A cycle is a path of edges that starts and ends on the same vertex.

224 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

5. Weighted Graph/Network - A weighted graph is a graph with numbers assigned to its edges. These numbers are
called weights.

6. Unweighted Graph/Network - An unweighted graph is a graph in which all edges have equal weight.

7. Directed Graph/Network - A directed graph is a graph where all the edges are directed.

8. Undirected Graph/Network - An undirected graph is a graph where all the edges are not directed.

9. Adjacent Vertices - Two vertices in a graph are said to be adjacent if there is an edge connecting them.

Types of Graphs

There are two types of graphs:

1. Directed Graphs

2. Undirected Graphs

3. Weighted Graph

4. Cyclic Graph

5. Acyclic Graph

6. Directed Acyclic Graph

Directed Graphs

In a directed graph, all the edges are directed. That means, each edge is associated with a direction. For example, if
there is an edge from node A to node B, then the edge is directed from A to B and not the other way around.

Directed graph, also called a digraph.

DG = nx.DiGraph()
DG.add_edges_from([('A', 'B'), ('A', 'C'), ('B', 'D'),
('B', 'E'), ('C', 'F'), ('C', 'G')])
nx.draw_networkx(DG, pos=nx.spring_layout(DG, seed=0), node_size=600, cmap='coolwarm',␣
→˓font_size=14, font_color='white')

1.28. Graphs Data Structure 225

ml_notes.akkefa.com, Release 0.0.1

Undirected Graphs

In an undirected graph, all the edges are undirected. That means, each edge is associated with a direction. For example,
if there is an edge from node A to node B, then the edge is directed from A to B and not the other way around.

G = nx.Graph()
G.add_edges_from([('A', 'B'), ('A', 'C'), ('B', 'D'),
('B', 'E'), ('C', 'F'), ('C', 'G')])

nx.draw_networkx(G, pos=nx.spring_layout(G, seed=0), node_size=600, cmap='coolwarm',␣
→˓font_size=14, font_color='white')

226 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Weighted Graph

In a weighted graph, each edge is assigned a weight or a cost. The weight can be positive, negative or zero. The weight
of an edge is represented by a number. A graph G= (V, E) is called a labeled or weighted graph because each edge has
a value or weight representing the cost of traversing that edge.

WG = nx.Graph()
WG.add_edges_from([('A', 'B', {"weight": 10}), ('A', 'C', {"weight": 20}), ('B', 'D', {
→˓"weight": 30}), ('B', 'E', {"weight": 40}), ('C', 'F', {"weight": 50}), ('C', 'G', {
→˓"weight": 60})])
labels = nx.get_edge_attributes(WG, "weight")

1.28. Graphs Data Structure 227

ml_notes.akkefa.com, Release 0.0.1

Cyclic Graph

A graph is said to be cyclic if it contains a cycle. A cycle is a path of edges that starts and ends on the same vertex. A
graph that contains a cycle is called a cyclic graph.

Acyclic Graph

When there are no cycles in a graph, it is called an acyclic graph.

Directed Acyclic Graph

It’s also known as a directed acyclic graph (DAG), and it’s a graph with directed edges but no cycle. It represents the
edges using an ordered pair of vertices since it directs the vertices and stores some data.

228 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Trees

A tree is a special type of graph that has a root node, and every node in the graph is connected by edges. It’s a directed
acyclic graph with a single root node and no cycles. A tree is a special type of graph that has a root node, and every
node in the graph is connected by edges. It’s a directed acyclic graph with a single root node and no cycles.

degree of a vertex

The degree of a vertex is the number of edges incident to it. In the following figure, the degree of vertex A is 3, the
degree of vertex B is 4, and the degree of vertex C is 2.

1.28. Graphs Data Structure 229

ml_notes.akkefa.com, Release 0.0.1

In-Degree and Out-Degree of a Vertex

In a directed graph, the in-degree of a vertex is the number of edges that are incident to the vertex. The out-degree of
a vertex is the number of edges that are incident to the vertex.

G = nx.Graph()
G.add_edges_from([('A', 'B'), ('A', 'C'), ('B', 'D'), ('B', 'E'), ('C', 'F'), ('C', 'G
→˓')])
print(f"deg(A) = {G.degree['A']}")
DG = nx.DiGraph()
DG.add_edges_from([('A', 'B'), ('A', 'C'), ('B', 'D'), ('B', 'E'), ('C', 'F'), ('C', 'G
→˓')])

print(f"deg^-(A) = {DG.in_degree['A']}")
print(f"deg^+(A) = {DG.out_degree['A']}")

230 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

deg(A) = 2
deg^-(A) = 0
deg^+(A) = 2

Path

A path is a sequence of edges that allows you to go from one vertex to another. The length of a path is the number of
edges in it.

Cycle

A cycle is a path that starts and ends at the same vertex.

Graph measures

Degrees and paths can be used to determine the importance of a node in a network. This measure is referred to as
centrality

Centrality quantifies the importance of a vertex or node in a network. It helps us to identify key nodes in a graph based
on their connectivity and influence on the flow of information or interactions within the network.

Degree centrality

Degree centrality is one of the simplest and most commonly used measures of centrality. It is simply defined as the
degree of the node. A high degree centrality indicates that a vertex is highly connected to other vertices in the graph,
and thus significantly influences the network.

Closeness centrality

Closeness centrality measures how close a node is to all other nodes in the graph. It corresponds to the average length
of the shortest path between the target node and all other nodes in the graph. A node with high closeness centrality can
quickly reach all other vertices in the network.

Betweenness centrality

Betweenness centrality measures the number of times a node lies on the shortest path between pairs of other nodes in
the graph. A node with high betweenness centrality acts as a bottleneck or bridge between different parts of the graph.

print(f"Degree centrality = {nx.degree_centrality(G)}")
print(f"Closeness centrality = {nx.closeness_centrality(G)}")
print(f"Betweenness centrality = {nx.betweenness_centrality(G)}")

Degree centrality = {'A': 0.3333333333333333, 'B': 0.5, 'C': 0.5, 'D': 0.
→˓16666666666666666, 'E': 0.16666666666666666, 'F': 0.16666666666666666, 'G': 0.
→˓16666666666666666}
Closeness centrality = {'A': 0.6, 'B': 0.5454545454545454, 'C': 0.5454545454545454, 'D
→˓': 0.375, 'E': 0.375, 'F': 0.375, 'G': 0.375}

(continues on next page)

1.28. Graphs Data Structure 231

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

Betweenness centrality = {'A': 0.6, 'B': 0.6, 'C': 0.6, 'D': 0.0, 'E': 0.0, 'F': 0.0, 'G
→˓': 0.0}

The importance of nodes A, B and C in a graph depends on the type of centrality used. Degree centrality considers
nodes B and C to be more important because they have more neighbors than node A . However, in closeness centrality,
node A is the most important as it can reach any other node in the graph in the shortest possible path. On the other
hand, nodes A,B and C have equal betweenness centrality, as they all lie on a large number of shortest paths between
other nodes.

Density

The density of a graph is the ratio of the number of edges to the number of possible edges. A graph with high density
is considered more connected and has more information flow compared to a graph with low density. A dense graph
has a density closer to 1, while a sparse graph has a density closer to 0.

G = nx.Graph()
G.add_edges_from([('A', 'B'), ('A', 'C'), ('B', 'D'), ('B', 'E'), ('C', 'F'), ('C', 'G
→˓')])
print(f"Density of G = {nx.density(G)}")

Density of G = 0.2857142857142857

Graph Representation

There are two ways to represent a graph:

1. Adjacency Matrix

2. Edge List

3. Adjacency List

Each data structure has its own advantages and disadvantages that depend on the specific application and requirements.

Adjacency Matrix

In an adjacency matrix, each row represents a vertex and each column represents another vertex. If there is an edge
between the two vertices, then the corresponding entry in the matrix is 1, otherwise it is 0. The following figure shows
an adjacency matrix for a graph with 4 vertices.

232 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

drawbacks of adjacency matrix

1. The adjacency matrix representation of a graph is not suitable for a graph with a large number of vertices. This
is because the number of entries in the matrix is proportional to the square of the number of vertices in the graph.

2. The adjacency matrix representation of a graph is not suitable for a graph with parallel edges. This is because
the matrix can only store a single value for each pair of vertices.

3. One of the main drawbacks of using an adjacency matrix is its space complexity: as the number of nodes in the
graph grows, the space required to store the adjacency matrix increases exponentially. adjacency matrix has a
space complexity of 𝑂

(︀
|𝑉 |2

)︀
, where |𝑉 |repre- sents the number of nodes in the graph.

Overall, while the adjacency matrix is a useful data structure for representing small graphs, it may not be practical for
larger ones due to its space complexity. Additionally, the overhead of adding or removing nodes can make it inefficient
for dynamically changing graphs.

Edge list

An edge list is a list of all the edges in a graph. Each edge is represented by a tuple or a pair of vertices. The edge list
can also include the weight or cost of each edge. This is the data structure we used to create our graphs with networkx:

edge_list = [(0, 1), (0, 2), (1, 3), (1, 4), (2, 5), (2, 6)]

checking whether two vertices are connected in an edge list requires iterating through the entire list, which can be time-
consuming for large graphs with many edges. Therefore, edge lists are more commonly used in applications where
space is a concern.

1.28. Graphs Data Structure 233

ml_notes.akkefa.com, Release 0.0.1

Adjacency List

In an adjacency list, each vertex stores a list of adjacent vertices. The following figure shows an adjacency list for a
graph with 4 vertices.

However, checking whether two vertices are connected can be slower than with an adjacency matrix. This is because
it requires iterating through the adjacency list of one of the vertices, which can be time-consuming for large graphs.

Graph Traversal

Graph algorithms are critical in solving problems related to graphs, such as finding the shortest path between two nodes
or detecting cycles. This section will discuss two graph traversal algorithms: BFS and DFS.

Graph traversal is the process of visiting (checking and/or updating) each vertex in a graph, exactly once. Such traversals
are classified by the order in which the vertices are visited. The order may be defined by a specific rule, for example,
depth-first search and breadth-first search.

Link: https://medium.com/basecs/breaking-down-breadth-first-search-cebe696709d9

While DFS uses a stack data structure, BFS leans on the queue data structure.

234 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Depth First Search

We know that depth-first search is the process of traversing down through one branch of a tree until we get to a leaf,
and then working our way back to the “trunk” of the tree. In other words, implementing a DFS means traversing down
through the subtrees of a binary search tree.

DFS is a recursive algorithm that starts at the root node and explores as far as possible along each branch before
backtracking.

It chooses a node and explores all of its unvisited neighbors, visiting the first neighbor that has not been explored and
backtracking only when all the neighbors have been visited. By doing so, it explores the graph by following as deep a
path from the starting node as possible before backtracking to explore other branches. This continues until all nodes
have been explored.

1.28. Graphs Data Structure 235

ml_notes.akkefa.com, Release 0.0.1

DFS Algorithm goes ‘deep’ instead of ‘wide’

https://miro.medium.com/v2/resize:fit:1400/1*LUL63FWqneOfsLKqMtHKFw.gif

In depth-first search, once we start down a path, we don’t stop until we get to the end. In other words, we traverse
through one branch of a tree until we get to a leaf, and then we work our way back to the trunk of the tree.

236 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Stack data structure is used to implement DFS. The algorithm starts with a particular node of a graph, then goes to
any of its adjacent nodes and repeats this process until it finds the goal. If it reaches a node from which there is no
unexplored edge leading to an unvisited node, then it backtracks to the last visited node and repeats the process.

1.28. Graphs Data Structure 237

ml_notes.akkefa.com, Release 0.0.1

G = nx.Graph()
G.add_edges_from([('A', 'B'), ('A', 'C'), ('B', 'D'), ('B', 'E'), ('C', 'F'), ('C', 'G
→˓')])

visited = []

def dfs(visited, graph, node):
if node not in visited:

visited.append(node)
We then iterate through each neighbor of the current node. For each neighbor, we␣

→˓recursively call the dfs() function
passing in visited, graph, and the neighbor as arguments:

for neighbor in graph[node]:
visited = dfs(visited, graph, neighbor)

The dfs() function continues to explore the graph depth-first, visiting all the␣
→˓neighbors of each node until there
are no more unvisited neighbors. Finally, the visited list is returned
return visited

dfs(visited, G, 'A')

['A', 'B', 'D', 'E', 'C', 'F', 'G']

238 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Once again, the order we obtained is the one we anticipated in Figure. DFS is useful in solving various problems, such
as finding connected components, topological sorting, and solving maze problems. It is particularly useful in finding
cycles in a graph since it traverses the graph in a depth-first order, and a cycle exists if, and only if, a node is visited
twice during the traversal.

Additionally, many other algorithms in graph theory build upon BFS and DFS, such as Dijkstra’s shortest path algo-
rithm, Kruskal’s minimum spanning tree algorithm, and Tarjan’s strongly connected components algorithm. Therefore,
a solid understanding of BFS and DFS is essential for anyone who wants to work with graphs and develop more ad-
vanced graph algorithms.

Breadth First Search

Breadth First Search (BFS) is an algorithm for traversing or searching tree or graph data structures. It starts at the tree
root (or some arbitrary node of a graph, sometimes referred to as a ‘search key’[1]), and explores the neighbor nodes
first, before moving to the next level neighbors.

It works by maintaining a queue of nodes to visit and marking each visited node as it is added to the queue. The
algorithm then dequeues the next node in the queue and explores all its neighbors, adding them to the queue if they
haven’t been visited yet.

Let’s now see how we can implement it in Python

def bfs(graph, node):
We initialize two lists (visited and queue) and add the starting node. The visited␣

→˓list keeps track of the nodes that have been
visited #during the search, while the queue list stores the nodes that need to be␣

→˓visited:

visited, queue = [node], [node]

(continues on next page)

1.28. Graphs Data Structure 239

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

while queue:
When We enter a while loop that continues until the queue list is empty.
Inside the loop, we remove the first node in the queue list using the pop(0) method␣

→˓and store the result in the node variable

node = queue.pop(0)
for neighbor in graph[node]:

if neighbor not in visited:
visited.append(neighbor)
queue.append(neighbor)

We iterate through the neighbors of the node using a for loop. For each neighbor␣
→˓that has not been visited yet,
we add it to the visited list and to the end of the queue list using the append()␣

→˓method. When it’s complete,
we return the visited list:
return visited

bfs(G, 'A')

['A', 'B', 'C', 'D', 'E', 'F', 'G']

The order we obtained is the one we anticipated in Figure.

BFS is particularly useful in finding the shortest path between two nodes in an unweighted graph. This is because the
algorithm visits nodes in order of their distance from the starting node, so the first time the target node is visited, it
must be along the shortest path from the starting node.

240 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Topological Sort

Topological sorting for Directed Acyclic Graph (DAG) is a linear ordering of vertices such that for every directed edge
uv, vertex u comes before v in the ordering. Topological Sorting for a graph is not possible if the graph is not a DAG.

Graph Algorithms

Graph algorithms are used to solve problems that involve graphs. Graph algorithms are used to find the shortest path
between two nodes, find the minimum spanning tree, find the strongly connected components, find the shortest path
from a single node to all other nodes, find the bridges and articulation points, find the Eulerian path and circuit, find the
maximum flow, find the maximum matching, find the biconnected components, find the Hamiltonian path and circuit,
find the dominating set, find the shortest path from a single node to all other nodes, find the bridges and articulation
points, find the Eulerian path and circuit, find the maximum flow, find the maximum matching, find the biconnected
components, find the Hamiltonian path and circuit, find the dominating set, etc.

1.29 Tree Data Structure

1.29.1 Spanning Trees

A spanning tree is a sub-graph of an undirected connected graph, which includes all the vertices of the graph with a
minimum possible number of edges. If a vertex is missed, then it is not a spanning tree. The edges may or may not
have weights assigned to them.

1.29. Tree Data Structure 241

ml_notes.akkefa.com, Release 0.0.1

Minimum Spanning Tree

A minimum spanning tree is a spanning tree with the minimum possible sum of edge weights. The edges may or may
not have weights assigned to them.

Finding Minimum Spanning Tree

There are many algorithms to find the minimum spanning tree. The most common ones are:

• Kruskal’s Algorithm

• Prim’s Algorithm

Kruskal’s Algorithm

Kruskal’s algorithm is a greedy algorithm that finds a minimum spanning tree for a connected weighted graph. This
means it finds a subset of the edges that forms a tree that includes every vertex, where the total weight of all the edges
in the tree is minimized. If the graph is not connected, then it finds a minimum spanning forest (a minimum spanning
tree for each connected component).

Algorithm Steps:

• Sort the graph edges with respect to their weights.

• Start adding edges to the MST from the edge with the smallest weight until the edge of the largest weight.

• Only add edges which doesn’t form a cycle , edges which connect only disconnected components.

242 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Union Find Data Structure

Union Find is a data structure that keeps track of a set of elements partitioned into a number of disjoint (non-overlapping)
subsets. It supports two operations:

• Find: Determine which subset a particular element is in. This can be used for determining if two elements are
in the same subset.

• Union: Join two subsets into a single subset.

1.29. Tree Data Structure 243

ml_notes.akkefa.com, Release 0.0.1

1.29.2 Amortized Analysis

Amortized analysis is a method of analyzing the costs associated with a data structure that averages the worst operations
out over time.

1.30 Shortest Path Algorithms

The shortest path problem is about finding a path between 2 vertices in a graph such that the total sum of the edges
weights is minimum. This problem could be solved easily using (BFS) if all edge weights were 1.

1.30.1 Bellman Ford’s Algorithm

Bellman Ford’s algorithm is a dynamic programming algorithm that solves the shortest path problem in graphs with
negative edge weights. It is a generalization of Dijkstra’s algorithm that works on graphs with negative edge weights.

Shortest path contains at most n -1 edges, because the shortest path couldn’t have a cycle.

So why shortest path shouldn’t have a cycle ? There is no need to pass a vertex again, because the shortest path to all
other vertices could be found without the need for a second visit for any vertices.

Algorithm Steps:

1. Initialize the distance of all vertices to infinity.

2. Set the distance of the source vertex to 0.

3. Relax all edges n - 1 times.

4. Check for negative-weight cycles.

1.30.2 Dijkstra’s Algorithm

Dijkstra’s algorithm is a dynamic programming algorithm that solves the shortest path problem in graphs with non-
negative edge weights. It is a generalization of BFS that works on graphs with non-negative edge weights.

Basics of Dijkstra’s Algorithm

• Dijkstra’s Algorithm basically starts at the node that you choose (the source node) and it analyzes the graph to
find the shortest path between that node and all the other nodes in the graph.

• The algorithm keeps track of the currently known shortest distance from each node to the source node and it
updates these values if it finds a shorter path.

• Once the algorithm has found the shortest path between the source node and another node, that node is marked
as “visited” and added to the path.

• The process continues until all the nodes in the graph have been added to the path. This way, we have a path that
connects the source node to all other nodes following the shortest path possible to reach each node.

244 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Requirements

Dijkstra’s Algorithm can only work with graphs that have positive weights. This is because, during the process, the
weights of the edges have to be added to find the shortest path.

If there is a negative weight in the graph, then the algorithm will not work properly. Once a node has been marked as
“visited”, the current path to that node is marked as the shortest path to reach that node. And negative weights can alter
this if the total weight can be decremented after this step has occurred.

1.31 Greedy Algorithms

1.31.1 Divide and Conquer

Divide and conquer is a general algorithm design paradigm: divide the problem into smaller subproblems, solve the
subproblems recursively, and then combine the solutions to the subproblems to solve the original problem.

Largest pair sum in an unsorted array

Given an unsorted of distinct integers, find the largest pair sum in it. For example, the largest pair sum in {12, 34, 10,
6, 40} is 74.

Brute force solution

numbers = [2,1,0,8,15,7,-1,6]
print(numbers)

max_pair_sum = 0

for i in numbers:
for j in numbers:

if i != j:
max_pair_sum = max(max_pair_sum, i + j)

print(max_pair_sum)

time Complexity = n^2
space Complexity = 1

[2, 1, 0, 8, 15, 7, -1, 6]
23

Best solution

1. Initialize the first = Integer.MIN_VALUE second = Integer.MIN_VALUE

2. Loop through the elements a) If the current element is greater than the first max element, then update second
max to the first max and update the first max to the current element.

3. Return (first + second)

def findLargestSumPair(arr, n):

Initialize first and second
(continues on next page)

1.31. Greedy Algorithms 245

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

largest element
if arr[0] > arr[1]:

first_big_number = arr[0]
second_big_number = arr[1]

else:
first_big_number = arr[1]
second_big_number = arr[0]

Traverse remaining array and
find first and second largest
elements in overall array
for i in range(2, n):

If current element is greater
than first then update both
first and second
if arr[i] > first_big_number:

second_big_number = first_big_number
first_big_number = arr[i]

If arr[i] is in between first
and second then update second
elif arr[i] > second_big_number and arr[i] != first_big_number:

second_big_number = arr[i]

return (first_big_number , second_big_number)

first, second = findLargestSumPair(numbers, len(numbers))

print(first, second)

print(first + second)

time Complexity = n
space Complexity = 1

15 8
23

246 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Max subarray problem

Given an array of integers, find the contiguous subarray that has the largest sum. Return the sum.

Brute force solution

Draw graph which show as stock values.

import numpy as np
import matplotlib.pyplot as plt

numbers = [2,1,0,8,15,7,-1,6]
print(numbers)

x = range(len(numbers))
y = numbers

plt.title("Line graph")
plt.plot(x, y, color="red")

plt.show()

[2, 1, 0, 8, 15, 7, -1, 6]

1.31. Greedy Algorithms 247

ml_notes.akkefa.com, Release 0.0.1

max_contiguous_sum = 0

for index,v in enumerate(numbers):
for j in range(index ,len(numbers)):

print(index, j)
print(numbers[index:j+1])
max_contiguous_sum = max(max_contiguous_sum, sum(numbers[index:j+1]))

print(max_contiguous_sum)

38

Divide and Conquer solution

import sys

def maxSubArraySum(arr):
Base case: when there is only one element in the array
if len(arr) == 1:

return arr[0]

Recursive case: divide the problem into smaller sub-problems
m = len(arr) // 2

Find the maximum subarray sum in the left half
left_max = maxSubArraySum(arr[:m])

(continues on next page)

248 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

Find the maximum subarray sum in the right half
right_max = maxSubArraySum(arr[m:])

Find the maximum subarray sum that crosses the middle element
left_sum = -sys.maxsize - 1
right_sum = -sys.maxsize - 1
sum = 0

Traverse the array from the middle to the right
for i in range(m, len(arr)):

sum += arr[i]
right_sum = max(right_sum, sum)

sum = 0

Traverse the array from the middle to the left
for i in range(m - 1, -1, -1):

sum += arr[i]
left_sum = max(left_sum, sum)

cross_max = left_sum + right_sum

Return the maximum of the three subarray sums
return max(cross_max, max(left_max, right_max))

print(maxSubArraySum(numbers))

38

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()

def max_subarray(arr):
if len(arr) == 1:

return arr[0]
else:

mid = len(arr) // 2
left = max_subarray(arr[:mid])
right = max_subarray(arr[mid:])
cross = max_crossing_subarray(arr, mid)
return max(left, right, cross)

def max_crossing_subarray(arr, mid):
left_sum = -np.inf
right_sum = -np.inf
sum = 0
for i in range(mid - 1, -1, -1):

sum += arr[i]
(continues on next page)

1.31. Greedy Algorithms 249

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

if sum > left_sum:
left_sum = sum
max_left = i

sum = 0
for j in range(mid, len(arr)):

sum += arr[j]
if sum > right_sum:

right_sum = sum
max_right = j

return left_sum + right_sum

arr = np.random.randint(-10, 10, 10)
arr = np.array(numbers)

max_subarray(arr)

38

def max_subarray(arr):
max_sum = -np.inf
for i in range(len(arr)):

sum = 0
for j in range(i, len(arr)):

sum += arr[j]
if sum > max_sum:

max_sum = sum
max_left = i
max_right = j

return max_sum

max_subarray(arr)

38

Fast Fourier Transform Algorithm

1.32 What is Graphs Theory

Mathematics

In mathematics, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations
between objects. A graph in this context is made up of vertices (also called nodes or points) which are connected by
edges (also called links or lines).

Computer Science

it is considered an abstract data type that is really good for representing connections or relations – unlike the tabular
data structures of relational database systems, which are ironically very limited in expressing relations.

250 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

1.32.1 Graph Data Structure

A graph is a non-linear data structure consisting of nodes and edges. The nodes are sometimes also referred to as
vertices and the edges are lines or arcs that connect any two nodes in the graph. More formally a Graph can be defined
as, a Graph consists of a finite set of vertices(or nodes) and set of Edges which connect a pair of nodes.

In graph theory, a graph is a mathematical structure consisting of a set of objects, called vertices or nodes, and a set of
connections, called edges, which link pairs of vertices. The notation:

𝐺 = (𝑉,𝐸)

is used to represent a graph, where 𝐺 is the graph, 𝑉 is the set of vertices, and
⋁︀

is the set of edges.

The nodes of a graph can represent any objects, such as cities, people, web pages, or molecules, and the edges represent
the relationships or connections between them.

import networkx as nx
import matplotlib.pyplot as plt

(continues on next page)

1.32. What is Graphs Theory 251

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

G = nx.Graph()
G.add_edges_from([('A', 'B'), ('A', 'C'), ('B', 'D'), ('B', 'E'), ('C', 'F'), ('C', 'G
→˓')])

plt.axis('off')
nx.draw_networkx(G,

pos=nx.spring_layout(G, seed=0),
node_size=600,
cmap='coolwarm',
font_size=14,
font_color='white',
)

plt.show()

/home/docs/checkouts/readthedocs.org/user_builds/ml-math/envs/new_rea/lib/python3.11/
→˓site-packages/networkx/drawing/nx_pylab.py:450: UserWarning: No data for colormapping␣
→˓provided via 'c'. Parameters 'cmap' will be ignored
node_collection = ax.scatter(

252 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

1.32.2 Graphs Terminology

The following are the most commonly used terms in graph theory with respect to graphs:

1. Vertex - A vertex, also called a “node”, is a fundamental part of a graph. In the context of graphs, a vertex is an
object which may contain zero or more items called attributes.

2. Edge - An edge is a connection between two vertices. An edge may contain a weight/value/cost.

3. Path - A path is a sequence of edges connecting a sequence of vertices.

4. Cycle - A cycle is a path of edges that starts and ends on the same vertex.

5. Weighted Graph/Network - A weighted graph is a graph with numbers assigned to its edges. These numbers are
called weights.

6. Unweighted Graph/Network - An unweighted graph is a graph in which all edges have equal weight.

7. Directed Graph/Network - A directed graph is a graph where all the edges are directed.

8. Undirected Graph/Network - An undirected graph is a graph where all the edges are not directed.

9. Adjacent Vertices - Two vertices in a graph are said to be adjacent if there is an edge connecting them.

1.32.3 Types of Graphs

There are many types of graphs:

1. Directed Graphs

2. Undirected Graphs

3. Weighted Graph

4. Cyclic Graph

5. Acyclic Graph

6. Directed Acyclic Graph

Graphs have many properties, including the direction of travel for each relationship. The decision of which graph type
you use usually depends on the use case.

There may not be an explicit direction from one node to another, such as with friendships in a social network, but in
others, there might be clearly defined directions, such as flights and airports dataset.

Directed Graphs

In a directed graph, all the edges are directed. That means, each edge is associated with a direction. For example, if
there is an edge from node A to node B, then the edge is directed from A to B and not the other way around.

Directed graph, also called a digraph.

https://media.geeksforgeeks.org/wp-content/cdn-uploads/SCC1.png

DG = nx.DiGraph()
DG.add_edges_from([('A', 'B'), ('A', 'C'), ('B', 'D'),
('B', 'E'), ('C', 'F'), ('C', 'G')])
nx.draw_networkx(DG, pos=nx.spring_layout(DG, seed=0), node_size=600, cmap='coolwarm',␣
→˓font_size=14, font_color='white')
plt.show()

1.32. What is Graphs Theory 253

ml_notes.akkefa.com, Release 0.0.1

Undirected Graphs

In an undirected graph, all the edges are undirected. That means, each edge is associated with a direction. For example,
if there is an edge from node A to node B, then the edge is directed from A to B and not the other way around.

G = nx.Graph()
G.add_edges_from([('A', 'B'), ('A', 'C'), ('B', 'D'),
('B', 'E'), ('C', 'F'), ('C', 'G')])

nx.draw_networkx(G, pos=nx.spring_layout(G, seed=0), node_size=600, cmap='coolwarm',␣
→˓font_size=14, font_color='white')
plt.show()

254 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Weighted Graph

In a weighted graph, each edge is assigned a weight or a cost. The weight can be positive, negative or zero. The weight
of an edge is represented by a number. A graph G= (V, E) is called a labeled or weighted graph because each edge has
a value or weight representing the cost of traversing that edge.

WG = nx.Graph()
WG.add_edges_from([('A', 'B', {"weight": 10}), ('A', 'C', {"weight": 20}), ('B', 'D', {
→˓"weight": 30}), ('B', 'E', {"weight": 40}), ('C', 'F', {"weight": 50}), ('C', 'G', {
→˓"weight": 60})])
labels = nx.get_edge_attributes(WG, "weight")

1.32. What is Graphs Theory 255

ml_notes.akkefa.com, Release 0.0.1

Cyclic Graph

A graph is said to be cyclic if it contains a cycle. A cycle is a path of edges that starts and ends on the same vertex. A
graph that contains a cycle is called a cyclic graph.

Acyclic Graph

When there are no cycles in a graph, it is called an acyclic graph.

Directed Acyclic Graph

It’s also known as a directed acyclic graph (DAG), and it’s a graph with directed edges but no cycle. It represents the
edges using an ordered pair of vertices since it directs the vertices and stores some data.

256 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Trees

A tree is a special type of graph that has a root node, and every node in the graph is connected by edges. It’s a directed
acyclic graph with a single root node and no cycles. A tree is a special type of graph that has a root node, and every
node in the graph is connected by edges. It’s a directed acyclic graph with a single root node and no cycles.

Biprartite Graph

A bipartite graph is a graph whose vertices can be divided into two independent sets, U and V, such that every edge (u,
v) either connects a vertex from U to V or a vertex from V to U. In other words, for every edge (u, v), either u belongs
to U and v to V, or u belongs to V and v to U. We can also say that there is no edge that connects vertices of same set.

1.32. What is Graphs Theory 257

ml_notes.akkefa.com, Release 0.0.1

Examples of Bipartite Graphs

• Authors-to-Papers (they authored)

• Actors-to-Movies (they appeared in)

• Users-to-Movies (they rated)

• Recipes-to-Ingredients (they contain)

• Author collaboration networks

• Movie co-rating networks

258 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Projections of Bipartite Graphs

Homogeneous graph

Homogeneous graph consists of one type of nodes and edges, and heterogeneous graph has multiple types of nodes or
edges.

An example of a homogeneous graph is an online social network with nodes representing people and edges representing
friendship. means we have same node for all types of node and similary all edges are same.

Heterogeneous graph

Heterogeneous graphs come with different types of information attached to nodes and edges. Thus, a single node or edge
feature tensor cannot hold all node or edge features of the whole graph, due to differences in type and dimensionality.

A graph with two or more types of node and/or two or more types of edge is called heterogeneous. An online social
network with edges of different types, say ‘friendship’ and ‘co-worker’, between nodes of ‘person’ type is an example
of a heterogeneous

1.32. What is Graphs Theory 259

ml_notes.akkefa.com, Release 0.0.1

1.32.4 Node degrees

The degree of a node is the number of edges connected to it. A node with no edges is called an isolated node. A node
with only one edge is called a leaf node.

Degree of a vertex/Node

The degree of a vertex is the number of edges incident to it. In the following figure, the degree of vertex A is 3, the
degree of vertex B is 4, and the degree of vertex C is 2.

260 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

In-Degree and Out-Degree of a Vertex/node

In a directed graph, the in-degree of a vertex is the number of edges that are incident to the vertex. The out-degree of
a vertex is the number of edges that are incident to the vertex.

G = nx.Graph()
G.add_edges_from([('A', 'B'), ('A', 'C'), ('B', 'D'), ('B', 'E'), ('C', 'F'), ('C', 'G
→˓')])
print(f"deg(A) = {G.degree['A']}")
DG = nx.DiGraph()
DG.add_edges_from([('A', 'B'), ('A', 'C'), ('B', 'D'), ('B', 'E'), ('C', 'F'), ('C', 'G
→˓')])

print(f"deg^-(A) = {DG.in_degree['A']}")
print(f"deg^+(A) = {DG.out_degree['A']}")

(continues on next page)

1.32. What is Graphs Theory 261

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

Danger: Drawsback of Node Degree feature

• The degree k of node v is the number of edges (neighboring nodes) the node has

• Treats all neighboring nodes equally.

1.32.5 Node Centrality

Centrality quantifies the importance of a vertex or node in a network. It helps us to identify key nodes in a graph based
on their connectivity and influence on the flow of information or interactions within the network.

There are several measures of centrality, each providing a different perspective on the importance of a node:

• Degree centrality

• Engienvector centrality

• Betweenness centrality

• Closeness centrality

Note

• Node degree counts the neighboring nodes without capturing their importance.

• Node centrality 𝑐𝑣 takes the node importance in a graph into account

1.32.6 Graph Representation

There are two ways to represent a graph:

1. Adjacency Matrix

2. Edge List

3. Adjacency List

Each data structure has its own advantages and disadvantages that depend on the specific application and requirements.

Adjacency Matrix

In an adjacency matrix, each row represents a vertex and each column represents another vertex. If there is an edge
between the two vertices, then the corresponding entry in the matrix is 1, otherwise it is 0. The following figure shows
an adjacency matrix for a graph with 4 vertices.

262 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Calculating the degree of node in adjacency matrix

Sum all the 1 in the row corresponding to the node. The sum of the elements in the row corresponding to the node is
the degree of the node.

1.32. What is Graphs Theory 263

ml_notes.akkefa.com, Release 0.0.1

Drawbacks of adjacency matrix

1. The adjacency matrix representation of a graph is not suitable for a graph with a large number of vertices. This
is because the number of entries in the matrix is proportional to the square of the number of vertices in the graph.

2. The adjacency matrix representation of a graph is not suitable for a graph with parallel edges. This is because
the matrix can only store a single value for each pair of vertices.

3. One of the main drawbacks of using an adjacency matrix is its space complexity: as the number of nodes in the
graph grows, the space required to store the adjacency matrix increases exponentially. adjacency matrix has a
space complexity of 𝑂

(︀
|𝑉 |2

)︀
, where |𝑉 |repre- sents the number of nodes in the graph.

Overall, while the adjacency matrix is a useful data structure for representing small graphs, it may not be practical for
larger ones due to its space complexity. Additionally, the overhead of adding or removing nodes can make it inefficient
for dynamically changing graphs.

Edge list

An edge list is a list of all the edges in a graph. Each edge is represented by a tuple or a pair of vertices. The edge list
can also include the weight or cost of each edge. This is the data structure we used to create our graphs with networkx:

edge_list = [(0, 1), (0, 2), (1, 3), (1, 4), (2, 5), (2, 6)]

checking whether two vertices are connected in an edge list requires iterating through the entire list, which can be time-
consuming for large graphs with many edges. Therefore, edge lists are more commonly used in applications where
space is a concern.

Adjacency List

In an adjacency list, each vertex stores a list of adjacent vertices. The following figure shows an adjacency list for a
graph with 4 vertices.

However, checking whether two vertices are connected can be slower than with an adjacency matrix. This is because
it requires iterating through the adjacency list of one of the vertices, which can be time-consuming for large graphs.

1.32.7 Graph Traversals

Traversal means to walk along the edges of a graph in specific ways.

Graph algorithms are critical in solving problems related to graphs, such as finding the shortest path between two nodes
or detecting cycles. This section will discuss two graph traversal algorithms: BFS and DFS.

Graph traversal is the process of visiting (checking and/or updating) each vertex in a graph, exactly once. Such traversals
are classified by the order in which the vertices are visited. The order may be defined by a specific rule, for example,
depth-first search and breadth-first search.

Link: https://medium.com/basecs/breaking-down-breadth-first-search-cebe696709d9

264 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

While DFS uses a stack data structure, BFS leans on the queue data structure.

1.32. What is Graphs Theory 265

ml_notes.akkefa.com, Release 0.0.1

Depth First Search

We know that depth-first search is the process of traversing down through one branch of a tree until we get to a leaf,
and then working our way back to the “trunk” of the tree. In other words, implementing a DFS means traversing down
through the subtrees of a binary search tree.

DFS is a recursive algorithm that starts at the root node and explores as far as possible along each branch before
backtracking.

It chooses a node and explores all of its unvisited neighbors, visiting the first neighbor that has not been explored and
backtracking only when all the neighbors have been visited. By doing so, it explores the graph by following as deep a
path from the starting node as possible before backtracking to explore other branches. This continues until all nodes
have been explored.

266 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

In depth first, Continue down the edges from the start vertex to the last vertex on that path or until the maximum traversal
depth is reached, then walk down the other paths.

DFS Algorithm goes ‘deep’ instead of ‘wide’

https://miro.medium.com/v2/resize:fit:1400/1*LUL63FWqneOfsLKqMtHKFw.gif

In depth-first search, once we start down a path, we don’t stop until we get to the end. In other words, we traverse
through one branch of a tree until we get to a leaf, and then we work our way back to the trunk of the tree.

1.32. What is Graphs Theory 267

ml_notes.akkefa.com, Release 0.0.1

Stack data structure is used to implement DFS. The algorithm starts with a particular node of a graph, then goes to
any of its adjacent nodes and repeats this process until it finds the goal. If it reaches a node from which there is no
unexplored edge leading to an unvisited node, then it backtracks to the last visited node and repeats the process.

268 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

G = nx.Graph()
G.add_edges_from([('A', 'B'), ('A', 'C'), ('B', 'D'), ('B', 'E'), ('C', 'F'), ('C', 'G
→˓')])

visited = []

def dfs(visited, graph, node):
if node not in visited:

visited.append(node)
We then iterate through each neighbor of the current node. For each neighbor, we␣

→˓recursively call the dfs() function
passing in visited, graph, and the neighbor as arguments:

for neighbor in graph[node]:
visited = dfs(visited, graph, neighbor)

The dfs() function continues to explore the graph depth-first, visiting all the␣
→˓neighbors of each node until there
are no more unvisited neighbors. Finally, the visited list is returned
return visited

dfs(visited, G, 'A')

['A', 'B', 'D', 'E', 'C', 'F', 'G']

1.32. What is Graphs Theory 269

ml_notes.akkefa.com, Release 0.0.1

Once again, the order we obtained is the one we anticipated in Figure. DFS is useful in solving various problems, such
as finding connected components, topological sorting, and solving maze problems. It is particularly useful in finding
cycles in a graph since it traverses the graph in a depth-first order, and a cycle exists if, and only if, a node is visited
twice during the traversal.

Additionally, many other algorithms in graph theory build upon BFS and DFS, such as Dijkstra’s shortest path algo-
rithm, Kruskal’s minimum spanning tree algorithm, and Tarjan’s strongly connected components algorithm. Therefore,
a solid understanding of BFS and DFS is essential for anyone who wants to work with graphs and develop more ad-
vanced graph algorithms.

Breadth First Search

Breadth First Search (BFS) is an algorithm for traversing or searching tree or graph data structures. It starts at the tree
root (or some arbitrary node of a graph, sometimes referred to as a ‘search key’[1]), and explores the neighbor nodes
first, before moving to the next level neighbors.

It works by maintaining a queue of nodes to visit and marking each visited node as it is added to the queue. The
algorithm then dequeues the next node in the queue and explores all its neighbors, adding them to the queue if they
haven’t been visited yet.

Follow all edges from the start vertex to the next level, then follow all edges of their neighbors by another level and
continue this pattern until there are no more edges to follow or the maximum traversal depth is reached.

270 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Let’s now see how we can implement it in Python

def bfs(graph, node):
We initialize two lists (visited and queue) and add the starting node. The visited␣

→˓list keeps track of the nodes that have been
visited #during the search, while the queue list stores the nodes that need to be␣

→˓visited:

visited, queue = [node], [node]

while queue:
When We enter a while loop that continues until the queue list is empty.
Inside the loop, we remove the first node in the queue list using the pop(0)␣

→˓method and store the result in the node variable

node = queue.pop(0)
for neighbor in graph[node]:

if neighbor not in visited:
visited.append(neighbor)
queue.append(neighbor)

We iterate through the neighbors of the node using a for loop. For each neighbor␣
→˓that has not been visited yet,
we add it to the visited list and to the end of the queue list using the append()␣

→˓method. When it’s complete,
we return the visited list:
return visited

bfs(G, 'A')

['A', 'B', 'C', 'D', 'E', 'F', 'G']

1.32. What is Graphs Theory 271

ml_notes.akkefa.com, Release 0.0.1

The order we obtained is the one we anticipated in Figure.

BFS is particularly useful in finding the shortest path between two nodes in an unweighted graph. This is because the
algorithm visits nodes in order of their distance from the starting node, so the first time the target node is visited, it
must be along the shortest path from the starting node.

Both algorithms return the same amount of paths if all other traversal options are the same, but the order in which edges
are followed and vertices are visited is different.

Depth-first Breadth-first
𝑆 → 𝐴 𝑆 → 𝐴
𝑆 → 𝐴→ 𝐷 𝑆 → 𝐵
𝑆 → 𝐴→ 𝐸 𝑆 → 𝐶
𝑆 → 𝐵 𝑆 → 𝐴→ 𝐷
𝑆 → 𝐵 → 𝐹 𝑆 → 𝐴→ 𝐸
𝑆 → 𝐶 𝑆 → 𝐵 → 𝐹

Note that there is no particular order in which the edges of a single vertex are followed. Hence, S→C may be returned
before S→A and S→B. Shorter paths are returned before longer paths using a breadth-first search still.

272 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Topological Sort

Topological sorting for Directed Acyclic Graph (DAG) is a linear ordering of vertices such that for every directed edge
uv, vertex u comes before v in the ordering. Topological Sorting for a graph is not possible if the graph is not a DAG.

Graph Algorithms

Graph algorithms are used to solve problems that involve graphs. Graph algorithms are used to find the shortest path
between two nodes, find the minimum spanning tree, find the strongly connected components, find the shortest path
from a single node to all other nodes, find the bridges and articulation points, find the Eulerian path and circuit, find the
maximum flow, find the maximum matching, find the biconnected components, find the Hamiltonian path and circuit,
find the dominating set, find the shortest path from a single node to all other nodes, find the bridges and articulation
points, find the Eulerian path and circuit, find the maximum flow, find the maximum matching, find the biconnected
components, find the Hamiltonian path and circuit, find the dominating set, etc.

1.33 Graph Neural Networks

Graph Neural Networks (GNNs) are a class of neural networks that operate on graphs. They are a powerful tool for
solving problems in domains such as social network analysis, recommender systems, and combinatorial optimization.

1.33.1 Node Representations

The goal of a GNN is to learn a function that maps a graph to a representation of its nodes. This representation can
then be used for various downstream tasks, such as node classification, link prediction, and clustering.

DeepWalk

DeepWalk is a simple algorithm for learning node representations in a graph. It works by performing random walks
on the graph, and using the SkipGram model from Word2Vec to learn the embeddings of the nodes.

It introduces important concepts such as embeddings that are at the core of GNNs. Unlike traditional neural networks,
the goal of this architecture is to produce representations that are then fed to other models, which perform downstream
tasks (for example, node classification).

DeepWalk architecture and its two major components: Word2Vec and random walks.

1.33. Graph Neural Networks 273

ml_notes.akkefa.com, Release 0.0.1

Word2Vec

The first step to comprehending the DeepWalk algorithm is to understand its major component: Word2Vec. it pro-
posed a new technique to translate words into vectors (also known as embeddings) using large datasets of text. These
representations can then be used in downstream tasks, such as sentiment classification.

One of the most surprising results of Word2Vec is its ability to solve analogies. A popular example is how it can answer
the question “man is to woman, what king is to ___?” It can be calculated as follows:

CBOW versus skip-gram

its only goal is to produce high-quality embeddings.

The continuous bag-of-words (CBOW) model:

This is trained to predict a word using its surrounding context (words coming before and after the target word). The
order of context words does not matter since their embeddings are summed in the model. The authors claim to obtain
better results using four words before and after the one that is predicted.

The continuous skip-gram model:

Here, we feed a single word to the model and try to predict the words around it. Increasing the range of context words
leads to better embeddings but also increases the training time.

Creating skip-grams

For now, we will focus on the skip-gram model since it is the architecture used by DeepWalk. Skip-grams are imple-
mented as pairs of words with the following structure (target word, context word). where target word is the input and
context word is the word to predict. The number of skip grams for the same target word depends on a parameter called
context size.

274 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Context Size Text Skip-grams
1 the train was late. (‘the’, ‘train’)

the train was late (’train’, ’the’)
(’train’, ’was’)

the train was late (’was’, ’train’)
(’was’, ’late’)

the train was late (‘late’, ‘was’)

2 the train was late (’the’, ’train’)
(’the’, ’was’)

the train was late
(’train’, ’the’)
(’train’, ’was’)
(’train’, ’late’)

the train was late
(’was’, ’the’)
(’was’, ’train’)
(’was’, ’late’)

the train was late (’late’, ’train’)
(’late’, ’was’)

The same idea can be applied to a corpus of text instead of a single sentence.

import numpy as np
np.random.seed(0)

CONTEXT_SIZE = 2

text = """Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nunc eu sem
scelerisque, dictum eros aliquam, accumsan quam. Pellentesque tempus, lorem ut
semper fermentum, ante turpis accumsan ex, sit amet ultricies tortor erat quis
nulla. Nunc consectetur ligula sit amet purus porttitor, vel tempus tortor
scelerisque. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices
posuere cubilia curae; Quisque suscipit ligula nec faucibus accumsan. Duis
vulputate massa sit amet viverra hendrerit. Integer maximus quis sapien id
convallis. Donec elementum placerat ex laoreet gravida. Praesent quis enim
facilisis, bibendum est nec, pharetra ex. Etiam pharetra congue justo, eget
imperdiet diam varius non. Mauris dolor lectus, interdum in laoreet quis,
faucibus vitae velit. Donec lacinia dui eget maximus cursus. Class aptent taciti
sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Vivamus
tincidunt velit eget nisi ornare convallis. Pellentesque habitant morbi
tristique senectus et netus et malesuada fames ac turpis egestas. Donec
tristique ultrices tortor at accumsan.
""".split()

Create skipgrams
skipgrams = []
for i in range(CONTEXT_SIZE, len(text) - CONTEXT_SIZE):

array = [text[j] for j in np.arange(i - CONTEXT_SIZE, i + CONTEXT_SIZE + 1) if j !=␣
→˓i]

skipgrams.append((text[i], array))

(continues on next page)

1.33. Graph Neural Networks 275

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

print(skipgrams[0:2])

[('dolor', ['Lorem', 'ipsum', 'sit', 'amet,']), ('sit', ['ipsum', 'dolor', 'amet,',
→˓'consectetur'])]

vocab = set(text)
VOCAB_SIZE = len(vocab)
print(f"Length of vocabulary = {VOCAB_SIZE}")

Length of vocabulary = 121

from gensim.models.word2vec import Word2Vec

Create Word2Vec
model = Word2Vec([text],

sg=1, # Skip-gram
vector_size=10,
min_count=0,
window=2,
workers=1,
seed=0)

print(f'Shape of W_embed: {model.wv.vectors.shape}')

Train model
model.train([text], total_examples=model.corpus_count, epochs=10)

Print a word embedding
print('\nWord embedding =')
print(model.wv[0])

ImportError Traceback (most recent call last)
Cell In[3], line 1
----> 1 from gensim.models.word2vec import Word2Vec

3 # Create Word2Vec
4 model = Word2Vec([text],
5 sg=1, # Skip-gram
6 vector_size=10,

(...)
9 workers=1,
10 seed=0)

File ~/checkouts/readthedocs.org/user_builds/ml-math/envs/new_rea/lib/python3.11/site-
→˓packages/gensim/__init__.py:11

7 __version__ = '4.3.2'
9 import logging

---> 11 from gensim import parsing, corpora, matutils, interfaces, models, similarities,␣
→˓utils # noqa:F401

14 logger = logging.getLogger('gensim')
15 if not logger.handlers: # To ensure reload() doesn't add another one

(continues on next page)

276 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

File ~/checkouts/readthedocs.org/user_builds/ml-math/envs/new_rea/lib/python3.11/site-
→˓packages/gensim/corpora/__init__.py:6

1 """
2 This package contains implementations of various streaming corpus I/O format.
3 """
5 # bring corpus classes directly into package namespace, to save some typing

----> 6 from .indexedcorpus import IndexedCorpus # noqa:F401 must appear before the␣
→˓other classes

8 from .mmcorpus import MmCorpus # noqa:F401
9 from .bleicorpus import BleiCorpus # noqa:F401

File ~/checkouts/readthedocs.org/user_builds/ml-math/envs/new_rea/lib/python3.11/site-
→˓packages/gensim/corpora/indexedcorpus.py:14

10 import logging
12 import numpy

---> 14 from gensim import interfaces, utils
16 logger = logging.getLogger(__name__)
19 class IndexedCorpus(interfaces.CorpusABC):

File ~/checkouts/readthedocs.org/user_builds/ml-math/envs/new_rea/lib/python3.11/site-
→˓packages/gensim/interfaces.py:19

7 """Basic interfaces used across the whole Gensim package.
8
9 These interfaces are used for building corpora, model transformation and␣

→˓similarity queries.
(...)
14
15 """
17 import logging

---> 19 from gensim import utils, matutils
22 logger = logging.getLogger(__name__)
25 class CorpusABC(utils.SaveLoad):

File ~/checkouts/readthedocs.org/user_builds/ml-math/envs/new_rea/lib/python3.11/site-
→˓packages/gensim/matutils.py:20

18 import scipy.sparse
19 from scipy.stats import entropy

---> 20 from scipy.linalg import get_blas_funcs, triu
21 from scipy.linalg.lapack import get_lapack_funcs
22 from scipy.special import psi # gamma function utils

ImportError: cannot import name 'triu' from 'scipy.linalg' (/home/docs/checkouts/
→˓readthedocs.org/user_builds/ml-math/envs/new_rea/lib/python3.11/site-packages/scipy/
→˓linalg/__init__.py)

While this approach works well with small vocabularies, the computational cost of applying a full softmax function to
millions of words (the vocabulary size) is too costly in most cases.

Word2Vec (and DeepWalk) implements one of these techniques, called H-Softmax. Instead of a flat softmax that
directly calculates the probability of every word, this technique uses a binary tree structure where leaves are words.
Even more interestingly, a Huffman tree can be used, where infrequent words are stored at deeper levels than common
words. In most cases, this dramatically speeds up the word prediction by a factor of at least 50.

1.33. Graph Neural Networks 277

ml_notes.akkefa.com, Release 0.0.1

H-Softmax can be activated in gensim using hs=1.

DeepWalk and random walks

Proposed in 2014 by Perozzi et al., DeepWalk quickly became extremely popular among graph researchers. It is a
simple algorithm that can be used to learn node representations in a graph. It works by performing random walks on
the graph, and using the SkipGram model from Word2Vec to learn the embeddings of the nodes.

The goal of DeepWalk is to produce high-quality feature representations of nodes in an unsupervised way. This archi-
tecture is heavily inspired by Word2Vec in NLP. However, instead of words, our dataset is composed of nodes. This is
why we use random walks to generate meaningful sequences of nodes that act like sentences. The following diagram
illustrates the connection between sentences and graphs:

Sentences can be represented as graphs

Why are random walks important? Even if nodes are randomly selected, the fact that they often appear together in a
sequence means that they are close to each other. Under the network homophily hypothesis, nodes that are close to each
other are similar. This is particularly the case in social networks, where people are connected to friends and family.

This idea is at the core of the DeepWalk algorithm: when nodes are close to each other, we want to obtain high similarity
scores. On the contrary, we want low scores when they are farther apart.

Let’s implement a random walk function using a networkx graph:

We generate a random graph thanks to the erdos_renyi_graph function with a fixed number of nodes (10) and a prede-
fined probability of creating an edge between two nodes (0.3):

import networkx as nx
import matplotlib.pyplot as plt

Create a graph
G = nx.erdos_renyi_graph(10, 0.3, seed=1, directed=False)

Plot graph
plt.figure()
plt.axis('off')
nx.draw_networkx(G,

pos=nx.spring_layout(G, seed=0),
node_size=600,
cmap='coolwarm',
font_size=14,
font_color='white'
)

278 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

/Users/ikram.ali/miniconda3/envs/ml_notes/lib/python3.11/site-packages/networkx/drawing/
→˓nx_pylab.py:433: UserWarning: No data for colormapping provided via 'c'. Parameters
→˓'cmap' will be ignored
node_collection = ax.scatter(

Let’s implement random walks with a simple function. This function takes two parameters: the starting node (start)
and the length of the walk (length). At every step, we randomly select a neighboring node (using np.random.choice)
until the walk is complete:

def random_walk(start, length):
walk = [str(start)] # starting node
for i in range(length):

neighbors = [node for node in G.neighbors(start)]
next_node = np.random.choice(neighbors, 1)[0]
walk.append(str(next_node))
start = next_node

return walk

print(random_walk(0, 10))

['0', '1', '9', '1', '0', '4', '6', '7', '6', '5', '6']

We can see that certain nodes, such as 0 and 9, are often found together. Considering that it is a homophilic graph, it
means that they are similar. It is precisely the type of relationship we’re trying to capture with DeepWalk.

Now that we have implemented Word2Vec and random walks separately, let’s combine them to create DeepWalk.

1.33. Graph Neural Networks 279

ml_notes.akkefa.com, Release 0.0.1

Implementing DeepWalk

The dataset we will use is Zachary’s Karate Club. It simply represents the relationships within a karate club studied
by Wayne W. Zachary in the 1970s. It is a kind of social network where every node is a member, and members who
interact outside the club are connected.

G = nx.karate_club_graph()

Process labels (Mr. Hi = 0, Officer = 1)
labels = []
for node in G.nodes:

label = G.nodes[node]['club']
labels.append(1 if label == 'Officer' else 0)

Plot graph
plt.figure(figsize=(12,12))
plt.axis('off')
nx.draw_networkx(G,

pos=nx.spring_layout(G, seed=0),
node_color=labels,
node_size=800,
cmap='coolwarm',
font_size=14,
font_color='white'
)

280 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

The next step is to generate our dataset, the random walks. We want to be as exhaustive as possible, which is why we
will create 80 random walks of a length of 10 for every node in the graph

walks = []
for node in G.nodes:

for _ in range(80):
walks.append(random_walk(node, 10))

walks[:10]

[['0', '10', '0', '17', '0', '2', '13', '0', '2', '9', '33'],
['0', '19', '0', '11', '0', '5', '16', '5', '16', '6', '5'],
['0', '31', '0', '3', '7', '0', '2', '7', '1', '7', '3'],

(continues on next page)

1.33. Graph Neural Networks 281

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

['0', '21', '1', '0', '2', '32', '30', '33', '8', '30', '1'],
['0', '8', '32', '33', '13', '0', '1', '13', '0', '5', '6'],
['0', '31', '32', '30', '32', '31', '0', '2', '1', '21', '1'],
['0', '11', '0', '4', '10', '5', '10', '0', '21', '1', '17'],
['0', '17', '1', '13', '3', '12', '0', '5', '16', '6', '0'],
['0', '4', '0', '5', '0', '10', '5', '16', '5', '16', '5'],
['0', '8', '0', '2', '9', '33', '14', '32', '20', '32', '2']]

The final step consists of implementing Word2Vec. Here, we use the skip-gram model previously seen with H-Softmax.
You can play with the other parameters to improve the quality of the embeddings:

model = Word2Vec(walks,
hs=1, # Hierarchical softmax
sg=1, # Skip-gram
vector_size=100,
window=10,
workers=1,
seed=1)

print(f'Shape of embedding matrix: {model.wv.vectors.shape}')

Build vocabulary
model.build_vocab(walks)

Train model
model.train(walks, total_examples=model.corpus_count, epochs=30, report_delay=1)

Shape of embedding matrix: (34, 100)

(186095, 897600)

Most similar nodes
print('Nodes that are the most similar to node 0:')
for similarity in model.wv.most_similar(positive=['0']):

print(f' {similarity}')

Similarity between two nodes
print(f"\nSimilarity between node 0 and 4: {model.wv.similarity('0', '4')}")

Nodes that are the most similar to node 0:
('7', 0.6418750882148743)
('11', 0.6362574696540833)
('10', 0.6352985501289368)
('4', 0.6283851265907288)
('1', 0.624032199382782)
('17', 0.6081531047821045)
('6', 0.5763437151908875)
('5', 0.5598757266998291)
('21', 0.557222843170166)
('16', 0.5503911972045898)

(continues on next page)

282 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

Similarity between node 0 and 4: 0.628385066986084

from sklearn.manifold import TSNE

nodes_wv = np.array([model.wv.get_vector(str(i)) for i in range(len(model.wv))])
labels = np.array(labels)

tsne = TSNE(n_components=2,
learning_rate='auto',
init='pca',
random_state=0).fit_transform(nodes_wv)

plt.figure(figsize=(6, 6), dpi=300)
plt.scatter(tsne[:, 0], tsne[:, 1], s=100, c=labels, cmap="coolwarm")
plt.show()

This plot is quite encouraging since we can see a clear line that separates the two classes. It should be possible for a
simple ML algorithm to classify these nodes with enough examples (training data). Let’s implement a classifier and
train it on our node embeddings

Our model obtains an accuracy score of 95.45%, which is pretty good considering the unfavorable train/test split we
gave it. There is still room for improvement, but this example showed two useful applications of DeepWalk:

• Discovering similarities between nodes using embeddings and cosine similarity (unsupervised learning)

• Using these embeddings as a dataset for a supervised task such as node classification

from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score

Create masks to train and test the model
train_mask = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24]
test_mask = [0, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 26, 27, 28, 29, 30, 31,␣
→˓32, 33]

Train classifier
clf = RandomForestClassifier(random_state=0)
clf.fit(nodes_wv[train_mask], labels[train_mask])

Evaluate accuracy
y_pred = clf.predict(nodes_wv[test_mask])
acc = accuracy_score(y_pred, labels[test_mask])
print(f'Accuracy = {acc*100:.2f}%')

1.33. Graph Neural Networks 283

ml_notes.akkefa.com, Release 0.0.1

Node2vec

Node2Vec is an architecture largely based on DeepWalk. DeepWalk the two main components of this architecture:
random walks and Word2Vec. How can we improve the quality of our embeddings?

Node2Vec is an algorithmic framework for representational learning on graphs. Given any graph, it can learn continu-
ous feature representations for the nodes, which can then be used for various downstream machine learning tasks. For
example, we can use these embeddings as features for node classification, link prediction, clustering, and visualization.

Node2Vec was introduced in 2016 by Grover and Leskovec from Stanford University. It keeps the same two main
components from DeepWalk: random walks and Word2Vec. The difference is that instead of obtaining sequences of
nodes with a uniform distribution, the random walks are carefully biased in Node2Vec. We will see why these biased
random walks perform better and how to implement them in the two following sections:

• Defining a neighborhood

• Introducing biases in random walks

Defining a neighborhood

How do you define the neighborhood of a node? what does “close” mean in the context of a graph?

We want to explore three nodes in the neighborhood of node A. This exploration process is also called a sampling
strategy:

• A possible solution would be to consider the three closest nodes in terms of connections. In this case, the
neighborhood of 𝐴, noted 𝑁(𝐴), would $𝑁(𝐴) = {𝐵,𝐶,𝐷}$

• Another possible sampling strategy consists of selecting nodes that are not adjacent to previous nodes first. In
our example, the neighborhood of 𝐴 would be 𝑁(𝐴) = {𝐷,𝐹 ,𝐹 }

In other words, we want to implement a Breadth-First Search (BFS) in the first case and a Depth-First Search (DFS)
in the second one. You can find more information about these algorithms and implementations in Chapter 2, Graph
Theory for Graph Neural Networks.

The best way to understand this is to actually implement this architecture and play with the parameters.

import networkx as nx
import matplotlib.pyplot as plt
import random
random.seed(0)

(continues on next page)

284 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

import numpy as np
np.random.seed(0)

Create graph
G = nx.erdos_renyi_graph(10, 0.3, seed=1, directed=False)

Plot graph
plt.figure()
plt.axis('off')
nx.draw_networkx(G,

pos=nx.spring_layout(G, seed=0),
node_size=600,
cmap='coolwarm',
font_size=14,
font_color='white'
)

def next_node(previous, current, p, q):
alphas = []

Get the neighboring nodes
neighbors = list(G.neighbors(current))

Calculate the appropriate alpha value for each neighbor
for neighbor in neighbors:

Distance = 0: probability to return to the previous node
if neighbor == previous:

alpha = 1/p
(continues on next page)

1.33. Graph Neural Networks 285

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

Distance = 1: probability of visiting a local node
elif G.has_edge(neighbor, previous):

alpha = 1
Distance = 2: probability to explore an unknown node
else:

alpha = 1/q
alphas.append(alpha)

Normalize the alpha values to create transition probabilities
probs = [alpha / sum(alphas) for alpha in alphas]

Randomly select the new node based on the transition probabilities
next = np.random.choice(neighbors, size=1, p=probs)[0]
return next

def random_walk(start, length, p, q):
walk = [start]

for i in range(length):
current = walk[-1]
previous = walk[-2] if len(walk) > 1 else None
next = next_node(previous, current, p, q)
walk.append(next)

return walk

random_walk(0, 8, p=1, q=1)

[0, 4, 7, 6, 4, 5, 4, 5, 6]

random_walk(0, 8, p=1, q=10)

[0, 9, 1, 9, 1, 9, 1, 0, 1]

Implementing Node2Vec

Now that we have the functions to generate biased random walks, the implementation of Node2Vec is very similar to
implementing DeepWalk.

from gensim.models.word2vec import Word2Vec
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score

Load dataset
G = nx.karate_club_graph()

Process labels (Mr. Hi = 0, Officer = 1)
labels = []
for node in G.nodes:

(continues on next page)

286 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

label = G.nodes[node]['club']
labels.append(1 if label == 'Officer' else 0)

Create a list of random walks
walks = []
for node in G.nodes:

for _ in range(80):
walks.append(random_walk(node, 10, 3, 2))

Create and train Word2Vec for DeepWalk
node2vec = Word2Vec(walks,

hs=1, # Hierarchical softmax
sg=1, # Skip-gram
vector_size=100,
window=10,
workers=2,
min_count=1,
seed=0)

node2vec.train(walks, total_examples=node2vec.corpus_count, epochs=30, report_delay=1)

Create masks to train and test the model
train_mask = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24]
test_mask = [0, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 26, 27, 28, 29, 30, 31,␣
→˓32, 33]
labels = np.array(labels)

Train Node2Vec classifier
clf = RandomForestClassifier(random_state=0)
clf.fit(node2vec.wv[train_mask], labels[train_mask])

Evaluate accuracy
y_pred = clf.predict(node2vec.wv[test_mask])
acc = accuracy_score(y_pred, labels[test_mask])
print(f'Node2Vec accuracy = {acc*100:.2f}%')

Node2Vec accuracy = 100.00%

Building a movie RecSys with Node2Vec

One of the most popular applications of GNNs is RecSys. If you think about the foundation of Word2Vec (and, thus,
DeepWalk and Node2Vec), the goal is to produce vectors with the ability to measure their similarity. Encode movies
instead of words, and you can suddenly ask for movies that are the most similar to a given input title. It sounds a lot
like a RecSys, right?

Another approach is to look at user ratings. There are different techniques to build a graph based on ratings: bipartite
graphs, edges based on pointwise mutual information, and so on. In this section, we’ll implement a simple and intuitive
approach: movies that are liked by the same users are connected. We’ll then use this graph to learn movie embeddings
using Node2Vec:

from io import BytesIO
from urllib.request import urlopen

(continues on next page)

1.33. Graph Neural Networks 287

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

from zipfile import ZipFile

url = 'https://files.grouplens.org/datasets/movielens/ml-100k.zip'
with urlopen(url) as zurl:
with ZipFile(BytesIO(zurl.read())) as zfile:
zfile.extractall('.')

import pandas as pd

ratings = pd.read_csv('ml-100k/u.data', sep='\t', names=['user_id', 'movie_id', 'rating',
→˓'unix_timestamp'])
ratings

movies = pd.read_csv('ml-100k/u.item', sep='|', usecols=range(2), names=['movie_id', 'title
→˓'], encoding='latin-1')

Here, we want to see movies that have been liked by the same users.
This means that ratings such as 1, 2, and 3 are not very relevant.
We can discard those and only keep scores of 4 and 5

ratings = ratings[ratings.rating >= 4]
ratings

We now have 48,580 ratings made by 610 users. The next step is to count every time that two movies are liked by the
same user. We will repeat this process for every user in the dataset.

To simplify things, we will use a defaultdict data structure, which automatically creates missing entries instead of
raising an error. We’ll use this structure to count movies that are liked together:

from collections import defaultdict
pairs = defaultdict(int)

Loop through the entire list of users
for group in ratings.groupby("user_id"):
List of IDs of movies rated by the current user
user_movies = list(group[1]["movie_id"])

Count every time two movies are seen together
for i in range(len(user_movies)):
for j in range(i+1, len(user_movies)):
pairs[(user_movies[i], user_movies[j])] += 1

For each pair of movies in our pairs structure, we unpack the two movies and their␣
→˓corresponding score:

Create a networkx graph
G = nx.Graph()

Try to create an edge between movies that are liked together
for pair in pairs:
if not isinstance(pair, tuple):

(continues on next page)

288 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

continue
movie1, movie2 = pair
score = pairs[pair]

The edge is only created when the score is high enough
if score >= 20:
G.add_edge(movie1, movie2, weight=score)

print("Total number of graph nodes:", G.number_of_nodes())
print("Total number of graph edges:", G.number_of_edges())

!pip install node2vec

from node2vec import Node2Vec

node2vec = Node2Vec(G, dimensions=64, walk_length=20, num_walks=200, p=2, q=1,␣
→˓workers=1)

model = node2vec.fit(window=10, min_count=1, batch_words=4)

def recommend(movie):
movie_id = str(movies[movies.title == movie].movie_id.values[0])
for id in model.wv.most_similar(movie_id)[:5]:
title = movies[movies.movie_id == int(id[0])].title.values[0]
print(f'{title}: {id[1]:.2f}')

recommend('Star Wars (1977)')

Vanilla Neural Networks

However, graph datasets tend to be richer than a mere set of connections: nodes and edges can also have features to
represent scores, colors, words, and so on. Including this additional information in our input data is essential to produce
the best embeddings possible.

The Cora dataset

Introduced by Sen et al. in 2008 [1], Cora (no license) is the most popular dataset for node classification in the scientific
literature. It represents a network of 2,708 publications, where each connection is a reference. Each publication is
described as a binary vector of 1,433 unique words, where 0 and 1 indicate the absence or presence of the corresponding
word, respectively. This representation is also called a binary bag of words in natural language processing. Our goal is
to classify each node into one of seven categories.

!pip install torch_geometric

from torch_geometric.datasets import Planetoid

dataset = Planetoid(root=".", name="Cora")

1.33. Graph Neural Networks 289

ml_notes.akkefa.com, Release 0.0.1

data = dataset[0]

print(f'Dataset: {dataset}')
print('---------------')
print(f'Number of graphs: {len(dataset)}')
print(f'Number of nodes: {data.x.shape[0]}')
print(f'Number of features: {dataset.num_features}')
print(f'Number of classes: {dataset.num_classes}')

print(f'Graph:')
print('------')
print(f'Edges are directed: {data.is_directed()}')
print(f'Graph has isolated nodes: {data.has_isolated_nodes()}')
print(f'Graph has loops: {data.has_self_loops()}')

from torch_geometric.datasets import FacebookPagePage

dataset = FacebookPagePage(root=".")

data = dataset[0]

print(f'Dataset: {dataset}')
print('-----------------------')
print(f'Number of graphs: {len(dataset)}')
print(f'Number of nodes: {data.x.shape[0]}')
print(f'Number of features: {dataset.num_features}')
print(f'Number of classes: {dataset.num_classes}')

print(f'\nGraph:')
print('------')
print(f'Edges are directed: {data.is_directed()}')
print(f'Graph has isolated nodes: {data.has_isolated_nodes()}')
print(f'Graph has loops: {data.has_self_loops()}')

data.train_mask = range(18000)
data.val_mask = range(18001, 20000)
data.test_mask = range(20001, 22470)

import pandas as pd

dataset = Planetoid(root=".", name="Cora")
data = dataset[0]

df_x = pd.DataFrame(data.x.numpy())
df_x['label'] = pd.DataFrame(data.y)
df_x

Classifying nodes with vanilla neural networks

Compared to Zachary’s Karate Club, these two datasets include a new type of information: node features. They provide
additional information about the nodes in a graph, such as a user’s age, gender, or interests in a social network. In a

290 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

vanilla neural network (also called multilayer perceptron), these embeddings are directly used in the model to perform
downstream tasks such as node classification.

we will consider node features as a regular tabular dataset. We will train a simple neural network on this dataset to
classify our nodes. Note that this architecture does not take into account the topology of the network. We will try to
fix this issue in the next section and compare our results.

The tabular dataset of node features can be easily accessed through the data object we created.

If you’re familiar with machine learning, you probably recognize a typical dataset with data and labels. We can develop
a simple Multilayer Perceptron (MLP) and train it on data.x with the labels provided by data.y.

import torch
torch.manual_seed(0)
from torch.nn import Linear
import torch.nn.functional as F

def accuracy(y_pred, y_true):
"""Calculate accuracy."""
return torch.sum(y_pred == y_true) / len(y_true)

class MLP(torch.nn.Module):
"""Multilayer Perceptron"""
def __init__(self, dim_in, dim_h, dim_out):
super().__init__()
self.linear1 = Linear(dim_in, dim_h)
self.linear2 = Linear(dim_h, dim_out)

def forward(self, x):
x = self.linear1(x)
x = torch.relu(x)
x = self.linear2(x)
return F.log_softmax(x, dim=1)

def fit(self, data, epochs):
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(self.parameters(),
lr=0.01,
weight_decay=5e-4)

self.train()
for epoch in range(epochs+1):
optimizer.zero_grad()
out = self(data.x)
loss = criterion(out[data.train_mask], data.y[data.train_mask])
acc = accuracy(out[data.train_mask].argmax(dim=1),
data.y[data.train_mask])
loss.backward()
optimizer.step()

if(epoch % 20 == 0):
val_loss = criterion(out[data.val_mask], data.y[data.val_mask])
val_acc = accuracy(out[data.val_mask].argmax(dim=1),

(continues on next page)

1.33. Graph Neural Networks 291

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

data.y[data.val_mask])
print(f'Epoch {epoch:>3} | Train Loss: {loss:.3f} | Train Acc:'
f' {acc*100:>5.2f}% | Val Loss: {val_loss:.2f} | '
f'Val Acc: {val_acc*100:.2f}%')

@torch.no_grad()
def test(self, data):
self.eval()
out = self(data.x)
acc = accuracy(out.argmax(dim=1)[data.test_mask], data.y[data.test_mask])
return acc

Create MLP model
mlp = MLP(dataset.num_features, 16, dataset.num_classes)
print(mlp)

Train
mlp.fit(data, epochs=100)

Test
acc = mlp.test(data)
print(f'\nMLP test accuracy: {acc*100:.2f}%')

Vanilla graph neural networks

Instead of directly introducing well-known GNN architectures, let’s try to build our own model to understand the
thought process behind GNNs.

A basic neural network layer corresponds to a linear transformation ℎ𝐴 = 𝑥𝐴𝑊
𝑇𝑥𝐴is the input vector of node 𝐴and V is the weight

matrix. In PyTorch, this equation can be implemented with the torch .mm () function, or with the nn. Linear class that
adds other parameters such as biases.

With our graph datasets, the input vectors are node features. It means that nodes are completely separate from each
other. This is not enough to capture a good understanding of the graph: like a pixel in an image, the context of a node
is essential to understand it. If you look at a group of pixels instead of a single one, you can recognize edges, patterns,
and so on. Likewise, to understand a node, you need to look at its neighborhood.

Lers call 𝑁𝐴 the set of neighbors of node A. Our graph linear layer can be written as follows: $ℎ𝐴 =
∑︀

𝑖∈𝒩𝐴
𝑥𝑖𝑊

𝑇 $
You can imagine several variants of this equation. For instance, we could have a weight matrix the neighbors. Note
that we cannot have a weight matrix per neighbor, as this number can change from node to node.

We’re talking about neural networks, so we can’t apply the previous equation to each node. Instead, we perform ma-
trix multiplications that are much more efficient. For instance, the equation of the linear layer can be rewritten as $𝐻 =
𝑌 𝑇 , where 𝑋 is the input matrix. 𝐼𝑛𝑜𝑢𝑟𝑐𝑎𝑠𝑒, 𝑡ℎ𝑒𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦𝑚𝑎𝑡𝑟𝑖𝑥\boldsymbol{A}𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠𝑡ℎ𝑒𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑒𝑣𝑒𝑟𝑦𝑛𝑜𝑑𝑒𝑖𝑛𝑡ℎ𝑒𝑔𝑟𝑎𝑝ℎ.𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑦𝑖𝑛𝑔𝑡ℎ𝑒𝑖𝑛𝑝𝑢𝑡𝑚𝑎𝑡𝑟𝑖𝑥𝑏𝑦𝑡ℎ𝑖𝑠𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦𝑚𝑎𝑡𝑟𝑖𝑥𝑤𝑖𝑙𝑙𝑑𝑖𝑟𝑒𝑐𝑡𝑙𝑦𝑠𝑢𝑚𝑢𝑝𝑡ℎ𝑒𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔𝑛𝑜𝑑𝑒𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠.𝑊𝑒𝑐𝑎𝑛𝑎𝑑𝑑𝑠𝑒𝑙𝑓𝑙𝑜𝑜𝑝𝑠𝑡𝑜𝑡ℎ𝑒𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦𝑚𝑎𝑡𝑟𝑖𝑥𝑠𝑜𝑡ℎ𝑎𝑡𝑡ℎ𝑒𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑛𝑜𝑑𝑒𝑖𝑠𝑎𝑙𝑠𝑜𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑𝑖𝑛𝑡ℎ𝑖𝑠𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛.𝑊𝑒𝑐𝑎𝑙𝑙𝑡ℎ𝑖𝑠𝑢𝑝𝑑𝑎𝑡𝑒𝑑𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦𝑚𝑎𝑡𝑟𝑖𝑥\tilde{A}=A+\boldsymbol{A}.𝑂𝑢𝑟𝑔𝑟𝑎𝑝ℎ𝑙𝑖𝑛𝑒𝑎𝑟𝑙𝑎𝑦𝑒𝑟𝑐𝑎𝑛𝑏𝑒𝑟𝑒𝑤𝑟𝑖𝑡𝑡𝑒𝑛𝑎𝑠𝑓𝑜𝑙𝑙𝑜𝑤𝑠 :𝐻 =
𝐴𝑇𝑋𝑊𝑇 $ Let’s test this layer by implementing it in PyTorch Geometric. We’ll then be able to use it as a regular layer
to build a GNN:

class VanillaGNNLayer(torch.nn.Module):
def __init__(self, dim_in, dim_out):
super().__init__()
self.linear = Linear(dim_in, dim_out, bias=False)

def forward(self, x, adjacency):
(continues on next page)

292 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

x = self.linear(x)
We perform two operations – the linear transformation,
and then the multiplication with the adjacency matrix
x = torch.sparse.mm(adjacency, x)
return x

Before we can create our vanilla GNN, we need to convert the edge index from our dataset (data.edge_index) in coor-
dinate format to a dense adjacency matrix. We also need to include self loops; otherwise, the central nodes won’t be
taken into account in their own embeddings.

from torch_geometric.utils import to_dense_adj
adjacency = to_dense_adj(data.edge_index)[0]
adjacency += torch.eye(len(adjacency))
adjacency

class VanillaGNN(torch.nn.Module):
def __init__(self, dim_in, dim_h, dim_out):
super().__init__()
self.gnn1 = VanillaGNNLayer(dim_in, dim_h)
self.gnn2 = VanillaGNNLayer(dim_h, dim_out)

We perform the same operations with our new layers,
which take the adjacency matrix we previously calculated as an additional input:
def forward(self, x, adjacency):
h = self.gnn1(x, adjacency)
h = torch.relu(h)
h = self.gnn2(h, adjacency)
return F.log_softmax(h, dim=1)

def fit(self, data, epochs):
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(self.parameters(),
lr=0.01,
weight_decay=5e-4)

self.train()
for epoch in range(epochs+1):
optimizer.zero_grad()
out = self(data.x, adjacency)
loss = criterion(out[data.train_mask], data.y[data.train_mask])
acc = accuracy(out[data.train_mask].argmax(dim=1),
data.y[data.train_mask])
loss.backward()
optimizer.step()

if(epoch % 20 == 0):
val_loss = criterion(out[data.val_mask], data.y[data.val_mask])
val_acc = accuracy(out[data.val_mask].argmax(dim=1),
data.y[data.val_mask])
print(f'Epoch {epoch:>3} | Train Loss: {loss:.3f} | Train Acc:'
f' {acc*100:>5.2f}% | Val Loss: {val_loss:.2f} | '
f'Val Acc: {val_acc*100:.2f}%')

(continues on next page)

1.33. Graph Neural Networks 293

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

torch.no_grad()
def test(self, data):
self.eval()
out = self(data.x, adjacency)
acc = accuracy(out.argmax(dim=1)[data.test_mask], data.y[data.test_mask])
return acc

Create the Vanilla GNN model
gnn = VanillaGNN(dataset.num_features, 16, dataset.num_classes)
print(gnn)
Train
gnn.fit(data, epochs=100)
Test
acc = gnn.test(data)
print(f'\nGNN test accuracy: {acc*100:.2f}%')

1.33.2 Graph Convolutional Networks

The Graph Convolutional Network (GCN) architecture is the blueprint of what a GNN looks like.

In this chapter, we’ll talk about the limitations of our previous vanilla GNN layer. This will help us to understand the
motivation behind GCNs. We’ll detail how the GCN layer works and why it performs better than our solution.

The last section is dedicated to a new task: node regression. This is not a very common task when it comes to GNNs,
but it is particularly useful when you’re working with tabular data.

Designing the graph convolutional layer

Unlike tabular or image data, nodes do not always have the same number of neighbors. However, if we look at our
GNN layer, we don’t take into account this difference in the number of neighbors. Our layer consists of a simple sum
without any normalization coefficient.

Here is how we calculated the embedding of a node i,

ℎ𝑖 =
∑︁
𝑗∈𝒩𝑖

𝑥𝑗𝑊
𝑇

G = nx.Graph()
G.add_edges_from([(1, 2), (1, 3), (1, 4), (3,4)])

nx.draw_networkx(G, pos=nx.spring_layout(G, seed=0), node_size=600, cmap='coolwarm',␣
→˓font_size=14, font_color='white')

294 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Imagine that node 1 has 1,000 neighbors and node 2 only has 1: the embedding will have much larger values than . This
is an issue because we want to compare these embeddings. How are we supposed to make meaningful comparisons
when their values are so vastly different?

Fortunately, there is a simple solution: dividing the embedding by the number of neighbors.

Let’s write the degree of node deg(A) . Here is the new formula for the GNN layer

ℎ𝑖 =
1

deg(𝑖)

∑︁
𝑗∈𝒩𝑖

𝑥𝑗𝑊
𝑇

But how do we translate it into a matrix multiplication? As a reminder, this was what we obtained for our vanilla GNN
layer:

𝐻 = 𝐴𝑇𝑋𝑊𝑇

Here, 𝐴 = 𝐴 + 𝐼

The only thing that is missing from this formula is a matrix to give us the normalization coefficient, deg(𝑖). This is
something that can be obtained thanks to the degree matrix 𝐷, which counts the number of neighbors for each node.
Here

Here is the same matrix in numpy

import numpy as np
D = np.array([

[3, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 2, 0],
[0, 0, 0, 2]

])

np.linalg.inv(D)

1.33. Graph Neural Networks 295

ml_notes.akkefa.com, Release 0.0.1

array([[0.33333333, 0. , 0. , 0.],
[0. , 1. , 0. , 0.],
[0. , 0. , 0.5 , 0.],
[0. , 0. , 0. , 0.5]])

This is exactly what we were looking for. To be even more accurate, we added self-loops to the graph, A = A + 1

NumPy has a specific function, numpy.identity(n), to quickly create an identity matrix l of n dimensions

np.linalg.inv(D + np.identity(4))

array([[0.25 , 0. , 0. , 0.],
[0. , 0.5 , 0. , 0.],
[0. , 0. , 0.33333333, 0.],
[0. , 0. , 0. , 0.33333333]])

Comparing graph convolutional and graph linear layers

In the previous chapter, our vanilla GNN outperformed the Node2Vec model, but how does it compare to a GCN? In
this section, we will compare their performance on the Cora and Facebook Page-Page datasets.

Compared to the vanilla GNN, the main feature of the GCN is that it considers node degrees to weigh its features.
Before the real implementation, let’s analyze the node degrees in both datasets. This information is relevant since it is
directly linked to the performance of the GCN.

from torch_geometric.datasets import Planetoid
from torch_geometric.utils import degree
from collections import Counter
import matplotlib.pyplot as plt

dataset = Planetoid(root=".", name="Cora")
data = dataset[0]

Get list of degrees for each node
degrees = degree(data.edge_index[0]).numpy()

Count the number of nodes for each degree
numbers = Counter(degrees)

Bar plot
fig, ax = plt.subplots()
ax.set_xlabel('Node degree')
ax.set_ylabel('Number of nodes')
plt.bar(numbers.keys(), numbers.values())

<BarContainer object of 37 artists>

296 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

from torch_geometric.datasets import FacebookPagePage

Import dataset from PyTorch Geometric
dataset = FacebookPagePage(root=".")
data = dataset[0]

Create masks
data.train_mask = range(18000)
data.val_mask = range(18001, 20000)
data.test_mask = range(20001, 22470)

Get list of degrees for each node
degrees = degree(data.edge_index[0]).numpy()

Count the number of nodes for each degree
numbers = Counter(degrees)

Bar plot
fig, ax = plt.subplots()
ax.set_xlabel('Node degree')
ax.set_ylabel('Number of nodes')
plt.bar(numbers.keys(), numbers.values())

Downloading https://graphmining.ai/datasets/ptg/facebook.npz
Processing...
Done!

1.33. Graph Neural Networks 297

ml_notes.akkefa.com, Release 0.0.1

<BarContainer object of 233 artists>

This distribution of node degrees looks even more skewed, with a number of neighbors that ranges from 1 to 709. For
the same reason, the Facebook Page-Page dataset is also a good case in which to apply a GCN.

We could build our own graph layer but, conveniently enough, PyTorch Geometric already has a predefined GCN layer.
Let’s implement it on the Cora dataset first:

import torch
torch.manual_seed(1)
import torch.nn.functional as F
from torch_geometric.nn import GCNConv

dataset = Planetoid(root=".", name="Cora")
data = dataset[0]

def accuracy(y_pred, y_true):
"""Calculate accuracy."""
return torch.sum(y_pred == y_true) / len(y_true)

class GCN(torch.nn.Module):
"""Graph Convolutional Network"""
def __init__(self, dim_in, dim_h, dim_out):
super().__init__()
self.gcn1 = GCNConv(dim_in, dim_h)
self.gcn2 = GCNConv(dim_h, dim_out)

(continues on next page)

298 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

def forward(self, x, edge_index):
h = self.gcn1(x, edge_index)
h = torch.relu(h)
h = self.gcn2(h, edge_index)
return F.log_softmax(h, dim=1)

def fit(self, data, epochs):
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(self.parameters(),
lr=0.01,
weight_decay=5e-4)

self.train()
for epoch in range(epochs+1):
optimizer.zero_grad()
out = self(data.x, data.edge_index)
loss = criterion(out[data.train_mask], data.y[data.train_mask])
acc = accuracy(out[data.train_mask].argmax(dim=1),
data.y[data.train_mask])
loss.backward()
optimizer.step()

if(epoch % 20 == 0):
val_loss = criterion(out[data.val_mask], data.y[data.val_mask])
val_acc = accuracy(out[data.val_mask].argmax(dim=1),
data.y[data.val_mask])
print(f'Epoch {epoch:>3} | Train Loss: {loss:.3f} | Train Acc:'
f' {acc*100:>5.2f}% | Val Loss: {val_loss:.2f} | '
f'Val Acc: {val_acc*100:.2f}%')

@torch.no_grad()
def test(self, data):
self.eval()
out = self(data.x, data.edge_index)
acc = accuracy(out.argmax(dim=1)[data.test_mask], data.y[data.test_mask])
return acc

Create the Vanilla GNN model
gcn = GCN(dataset.num_features, 16, dataset.num_classes)
print(gcn)

Train
gcn.fit(data, epochs=100)

Test
acc = gcn.test(data)
print(f'\nGCN test accuracy: {acc*100:.2f}%\n')

GCN(
(gcn1): GCNConv(1433, 16)
(gcn2): GCNConv(16, 7)

(continues on next page)

1.33. Graph Neural Networks 299

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

)
Epoch 0 | Train Loss: 1.932 | Train Acc: 15.71% | Val Loss: 1.94 | Val Acc: 15.20%
Epoch 20 | Train Loss: 0.099 | Train Acc: 100.00% | Val Loss: 0.75 | Val Acc: 77.80%
Epoch 40 | Train Loss: 0.014 | Train Acc: 100.00% | Val Loss: 0.72 | Val Acc: 77.20%
Epoch 60 | Train Loss: 0.015 | Train Acc: 100.00% | Val Loss: 0.71 | Val Acc: 77.80%
Epoch 80 | Train Loss: 0.017 | Train Acc: 100.00% | Val Loss: 0.71 | Val Acc: 77.00%
Epoch 100 | Train Loss: 0.016 | Train Acc: 100.00% | Val Loss: 0.71 | Val Acc: 76.40%

GCN test accuracy: 79.70%

If we repeat this experiment 100 times, we obtain an average accuracy score of 80.17% (± 0.61%), which is significantly
higher than the 74.98% (± 1.50%) obtained by our vanilla GNN.

The exact same model is then applied to the Facebook Page-Page dataset, where it obtains an average accuracy of
91.54% (± 0.28%). Once again, it is significantly higher than the result obtained by the vanilla GNN, with only
84.85% (± 1.68%).We can attribute these high scores to the wide range of node degrees in these two datasets. By
normalizing features and considering the number of neighbors of the central node and its own neighbors, the GCN
gains a lot of flexibility and can work well with various types of graphs.

1.33.3 Graph Attention Networks

Graph Attention Networks (GATs) are a theoretical improvement over GCNs. Instead of static normalization coeffi-
cients, they propose weighting factors calculated by a process called self-attention. The same process is at the core of
one of the most successful deep learning architectures.

we will learn how the graph attention layer works in four steps. This is actually the perfect example for understanding
how self-attention works in general. This theoretical background will allow us to implement a graph attention layer
from scratch in NumPy.

Introducing the graph attention layer

The main idea behind GATs is that some nodes are more important than others. In fact, this was already the case with
the graph convolutional layer: nodes with few neighbors were more important than others, thanks to the normalization
coefficient. This approach is limiting because it only takes into account node degrees. On the other hand, the goal of
the graph attention layer is to produce weighting factors that also consider the importance of node features.

Let’s call our weighting factors attention scores and note, , the attention score between the nodes and . We can define
the graph attention operator as follows:

ℎ𝑖 =
∑︁
𝑗∈𝒩𝑖

𝛼𝑖𝑗W𝑥𝑗

An important characteristic of GATs is that the attention scores are calculated implicitly by comparing inputs to each
other (hence the name self-attention).

we will see how to calculate these attention scores in four steps and also how to make an improvement to the graph
attention layer:

• Linear transformation

• Activation function

• Softmax normalization

• Multi-head attention

300 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

• Improved graph attention layer

Import dataset from PyTorch Geometric
dataset = Planetoid(root=".", name="Cora")
data = dataset[0]

import torch
torch.manual_seed(1)
import torch.nn.functional as F
from torch_geometric.nn import GATv2Conv, GCNConv
from torch.nn import Linear, Dropout

def accuracy(y_pred, y_true):
"""Calculate accuracy."""
return torch.sum(y_pred == y_true) / len(y_true)

class GAT(torch.nn.Module):
def __init__(self, dim_in, dim_h, dim_out, heads=8):
super().__init__()
self.gat1 = GATv2Conv(dim_in, dim_h, heads=heads)
self.gat2 = GATv2Conv(dim_h*heads, dim_out, heads=1)

def forward(self, x, edge_index):
h = F.dropout(x, p=0.6, training=self.training)
h = self.gat1(h, edge_index)
h = F.elu(h)
h = F.dropout(h, p=0.6, training=self.training)
h = self.gat2(h, edge_index)
return F.log_softmax(h, dim=1)

def fit(self, data, epochs):
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(self.parameters(), lr=0.01, weight_decay=0.01)

self.train()
for epoch in range(epochs+1):
optimizer.zero_grad()
out = self(data.x, data.edge_index)
loss = criterion(out[data.train_mask], data.y[data.train_mask])
acc = accuracy(out[data.train_mask].argmax(dim=1), data.y[data.train_mask])
loss.backward()
optimizer.step()

if(epoch % 20 == 0):
val_loss = criterion(out[data.val_mask], data.y[data.val_mask])
val_acc = accuracy(out[data.val_mask].argmax(dim=1), data.y[data.val_
→˓mask])
print(f'Epoch {epoch:>3} | Train Loss: {loss:.3f} | Train Acc:
→˓{acc*100:>5.2f}% | Val Loss: {val_loss:.2f} | Val Acc: {val_acc*100:.2f}%')

@torch.no_grad()
(continues on next page)

1.33. Graph Neural Networks 301

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

def test(self, data):
self.eval()
out = self(data.x, data.edge_index)
acc = accuracy(out.argmax(dim=1)[data.test_mask], data.y[data.test_mask])
return acc

Create the Vanilla GNN model
gat = GAT(dataset.num_features, 32, dataset.num_classes)
print(gat)

Train
gat.fit(data, epochs=100)

Test
acc = gat.test(data)
print(f'GAT test accuracy: {acc*100:.2f}%')

GAT(
(gat1): GATv2Conv(1433, 32, heads=8)
(gat2): GATv2Conv(256, 7, heads=1)

)
Epoch 0 | Train Loss: 1.978 | Train Acc: 12.86% | Val Loss: 1.94 | Val Acc: 13.80%
Epoch 20 | Train Loss: 0.238 | Train Acc: 96.43% | Val Loss: 1.04 | Val Acc: 67.20%
Epoch 40 | Train Loss: 0.165 | Train Acc: 98.57% | Val Loss: 0.95 | Val Acc: 71.00%
Epoch 60 | Train Loss: 0.209 | Train Acc: 96.43% | Val Loss: 0.91 | Val Acc: 71.80%
Epoch 80 | Train Loss: 0.173 | Train Acc: 100.00% | Val Loss: 0.93 | Val Acc: 71.00%
Epoch 100 | Train Loss: 0.190 | Train Acc: 97.86% | Val Loss: 0.96 | Val Acc: 70.60%
GAT test accuracy: 81.00%

This accuracy score is slightly better than the average score we obtained with a GCN. We’ll make a proper comparison
after applying the GAT architecture to the second dataset.

1.33.4 GraphSAGE

GraphSAGE is a GNN architecture designed to handle large graphs. In the tech industry, scalability is a key driver
for growth. As a result, systems are inherently designed to accommodate millions of users. This ability requires a
fundamental shift in how the GNN model works compared to GCNs and GATs.

Its goal is to generate node embeddings for downstream tasks, such as node classification. In addition, it solves two
issues with GCNs and GATs – scaling to large graphs and efficiently generalizing to unseen data. In this section, we
will explain how to implement it by describing the two main components of GraphSAGE:

• Neighbor sampling

• Aggregation

302 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Neighbor sampling

So far, we haven’t discussed an essential concept in traditional neural networks – mini-batching. It consists of dividing
our dataset into smaller fragments, called batches. They are used in gradient descent, the optimization algorithm that
finds the best weights and biases during training. There are three types of gradient descent:

Batch gradient descent: Weights and biases are updated after a whole dataset has been processed (every epoch). This
is the technique we have implemented so far. However, it is a slow process that requires the dataset to fit in memory.

Stochastic gradient descent: Weights and biases are updated for each training example in the dataset. This is a noisy
process because the errors are not averaged. However, it can be used to perform online training.

Mini-batch gradient descent: Weights and biases are updated at the end of every mini-batch of training examples. This
technique is faster (mini-batches can be processed in parallel using a GPU) and leads to more stable convergence. In
addition, the dataset can exceed the available memory, which is essential for handling large graphs.

Dividing a tabular dataset is straightforward; it simply consists of selecting samples (rows). However, this is an issue
regarding graph datasets – how do we choose nodes without breaking essential connections? If we’re not careful, we
could end up with a collection of isolated nodes where we cannot perform any aggregation.

We have to think about how GNNs use datasets. Every GNN layer computes node embeddings based on their neighbors.
This means that computing an embedding only requires the direct neighbors of this node (1 hop). If our GNN has two
GNN layers, we need these neighbors and their own neighbors (2 hops), and so on

Aggregation

Now that we’ve seen how to select the neighboring nodes, we still need to compute embeddings. This is performed by
the aggregation operator (or aggregator). In GraphSAGE, the authors have proposed three solutions:

• A mean aggregator

• A long short-term memory (LSTM) aggregator

• A pooling aggregator

Classifying nodes on PubMed

In this section, we will implement a GraphSAGE architecture to perform node classification on the PubMed dataset.
The PubMed dataset displays a similar but larger graph, with 19,717 nodes and 88,648 edges.

Node features are TF-IDF-weighted word vectors with 500 dimensions. The goal is to correctly classify nodes into three
categories – diabetes mellitus experimental, diabetes mellitus type 1, and diabetes mellitus type 2. Let’s implement it
step by step using PyG:

dataset = Planetoid(root='.', name="Pubmed")
data = dataset[0]

Print information about the dataset
print(f'Dataset: {dataset}')
print('-------------------')
print(f'Number of graphs: {len(dataset)}')
print(f'Number of nodes: {data.x.shape[0]}')
print(f'Number of features: {dataset.num_features}')
print(f'Number of classes: {dataset.num_classes}')

Print information about the graph
(continues on next page)

1.33. Graph Neural Networks 303

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

print(f'\nGraph:')
print('------')
print(f'Training nodes: {sum(data.train_mask).item()}')
print(f'Evaluation nodes: {sum(data.val_mask).item()}')
print(f'Test nodes: {sum(data.test_mask).item()}')
print(f'Edges are directed: {data.is_directed()}')
print(f'Graph has isolated nodes: {data.has_isolated_nodes()}')
print(f'Graph has loops: {data.has_self_loops()}')

Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.pubmed.x
Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.pubmed.tx
Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.pubmed.allx
Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.pubmed.y
Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.pubmed.ty
Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.pubmed.ally
Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.pubmed.graph
Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.pubmed.test.index
Processing...

Dataset: Pubmed()

Number of graphs: 1
Number of nodes: 19717
Number of features: 500
Number of classes: 3

Graph:

Training nodes: 60
Evaluation nodes: 500
Test nodes: 1000
Edges are directed: False
Graph has isolated nodes: False
Graph has loops: False

Done!

!pip install torch_sparse
!pip install pyg_lib

Collecting torch_sparse
Downloading torch_sparse-0.6.17.tar.gz (209 kB)

209.2/209.2 kB 1.6 MB/s eta 0:00:00a 0:00:01
?25h Preparing metadata (setup.py) ... ?25ldone
?25hRequirement already satisfied: scipy in /Users/ikram.ali/miniconda3/envs/ml_notes/
→˓lib/python3.11/site-packages (from torch_sparse) (1.10.1)
Requirement already satisfied: numpy<1.27.0,>=1.19.5 in /Users/ikram.ali/miniconda3/envs/
→˓ml_notes/lib/python3.11/site-packages (from scipy->torch_sparse) (1.24.2)
Building wheels for collected packages: torch_sparse
Building wheel for torch_sparse (setup.py) ... ?25ldone

?25h Created wheel for torch_sparse: filename=torch_sparse-0.6.17-cp311-cp311-macosx_11_
(continues on next page)

304 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

→˓0_arm64.whl size=460727␣
→˓sha256=b43676345bd8a5d2d5d938834745dad52c789b7081b564a3769f64e0c2366511
Stored in directory: /Users/ikram.ali/Library/Caches/pip/wheels/43/27/bc/

→˓21943b121fafafd76c514e5f34c8ad8592766bee55f6771b43
Successfully built torch_sparse
Installing collected packages: torch_sparse
Successfully installed torch_sparse-0.6.17

!pip install pyg_lib

ERROR: Could not find a version that satisfies the requirement pyg_lib (from versions:␣
→˓none)
ERROR: No matching distribution found for pyg_lib

from torch_geometric.loader import NeighborLoader
from torch_geometric.utils import to_networkx

Create batches with neighbor sampling
train_loader = NeighborLoader(
data,
num_neighbors=[5, 10],
batch_size=16,
input_nodes=data.train_mask,
)

Print each subgraph
for i, subgraph in enumerate(train_loader):
print(f'Subgraph {i}: {subgraph}')

ImportError Traceback (most recent call last)
Cell In[68], line 13

5 train_loader = NeighborLoader(
6 data,
7 num_neighbors=[5, 10],
8 batch_size=16,
9 input_nodes=data.train_mask,
10)
12 # Print each subgraph

---> 13 for i, subgraph in enumerate(train_loader):
14 print(f'Subgraph {i}: {subgraph}')

File ~/miniconda3/envs/ml_notes/lib/python3.11/site-packages/torch_geometric/loader/base.
→˓py:36, in DataLoaderIterator.__next__(self)

35 def __next__(self) -> Any:
---> 36 return self.transform_fn(next(self.iterator))

File ~/miniconda3/envs/ml_notes/lib/python3.11/site-packages/torch/utils/data/dataloader.
→˓py:634, in _BaseDataLoaderIter.__next__(self)

631 if self._sampler_iter is None:
(continues on next page)

1.33. Graph Neural Networks 305

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

632 # TODO(https://github.com/pytorch/pytorch/issues/76750)
633 self._reset() # type: ignore[call-arg]

--> 634 data = self._next_data()
635 self._num_yielded += 1
636 if self._dataset_kind == _DatasetKind.Iterable and \
637 self._IterableDataset_len_called is not None and \
638 self._num_yielded > self._IterableDataset_len_called:

File ~/miniconda3/envs/ml_notes/lib/python3.11/site-packages/torch/utils/data/dataloader.
→˓py:678, in _SingleProcessDataLoaderIter._next_data(self)

676 def _next_data(self):
677 index = self._next_index() # may raise StopIteration

--> 678 data = self._dataset_fetcher.fetch(index) # may raise StopIteration
679 if self._pin_memory:
680 data = _utils.pin_memory.pin_memory(data, self._pin_memory_device)

File ~/miniconda3/envs/ml_notes/lib/python3.11/site-packages/torch/utils/data/_utils/
→˓fetch.py:54, in _MapDatasetFetcher.fetch(self, possibly_batched_index)

52 else:
53 data = self.dataset[possibly_batched_index]

---> 54 return self.collate_fn(data)

File ~/miniconda3/envs/ml_notes/lib/python3.11/site-packages/torch_geometric/loader/node_
→˓loader.py:117, in NodeLoader.collate_fn(self, index)

114 r"""Samples a subgraph from a batch of input nodes."""
115 input_data: NodeSamplerInput = self.input_data[index]

--> 117 out = self.node_sampler.sample_from_nodes(input_data)
119 if self.filter_per_worker: # Execute `filter_fn` in the worker process
120 out = self.filter_fn(out)

File ~/miniconda3/envs/ml_notes/lib/python3.11/site-packages/torch_geometric/sampler/
→˓neighbor_sampler.py:174, in NeighborSampler.sample_from_nodes(self, inputs)

170 def sample_from_nodes(
171 self,
172 inputs: NodeSamplerInput,
173) -> Union[SamplerOutput, HeteroSamplerOutput]:

--> 174 return node_sample(inputs, self._sample)

File ~/miniconda3/envs/ml_notes/lib/python3.11/site-packages/torch_geometric/sampler/
→˓neighbor_sampler.py:358, in node_sample(inputs, sample_fn)

355 seed = inputs.node
356 seed_time = inputs.time

--> 358 out = sample_fn(seed, seed_time)
359 out.metadata = (inputs.input_id, inputs.time)
361 return out

File ~/miniconda3/envs/ml_notes/lib/python3.11/site-packages/torch_geometric/sampler/
→˓neighbor_sampler.py:325, in NeighborSampler._sample(self, seed, seed_time, **kwargs)

322 num_sampled_nodes = num_sampled_edges = None
324 else:

--> 325 raise ImportError(f"'{self.__class__.__name__}' requires "
326 f"either 'pyg-lib' or 'torch-sparse'")

(continues on next page)

306 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

328 return SamplerOutput(
329 node=node,
330 row=row,
(...)
335 num_sampled_edges=num_sampled_edges,
336)

ImportError: 'NeighborSampler' requires either 'pyg-lib' or 'torch-sparse'

import numpy as np
import networkx as nx
import matplotlib.pyplot as plt

Plot each subgraph
fig = plt.figure(figsize=(16,16))
for idx, (subdata, pos) in enumerate(zip(train_loader, [221, 222, 223, 224])):
G = to_networkx(subdata, to_undirected=True)
ax = fig.add_subplot(pos)
ax.set_title(f'Subgraph {idx}', fontsize=24)
plt.axis('off')
nx.draw_networkx(G,
pos=nx.spring_layout(G, seed=0),
with_labels=False,
node_color=subdata.y,
)
plt.show()

import torch.nn.functional as F
from torch_geometric.nn import SAGEConv

def accuracy(pred_y, y):
"""Calculate accuracy."""
return ((pred_y == y).sum() / len(y)).item()

class GraphSAGE(torch.nn.Module):
"""GraphSAGE"""
def __init__(self, dim_in, dim_h, dim_out):
super().__init__()
self.sage1 = SAGEConv(dim_in, dim_h)
self.sage2 = SAGEConv(dim_h, dim_out)

def forward(self, x, edge_index):
h = self.sage1(x, edge_index)
h = torch.relu(h)
h = F.dropout(h, p=0.5, training=self.training)
h = self.sage2(h, edge_index)
return F.log_softmax(h, dim=1)

def fit(self, data, epochs):
(continues on next page)

1.33. Graph Neural Networks 307

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(self.parameters(), lr=0.01)

self.train()
for epoch in range(epochs+1):
total_loss = 0
acc = 0
val_loss = 0
val_acc = 0

Train on batches
for batch in train_loader:
optimizer.zero_grad()
out = self(batch.x, batch.edge_index)
loss = criterion(out[batch.train_mask], batch.y[batch.train_mask])
total_loss += loss.item()
acc += accuracy(out[batch.train_mask].argmax(dim=1), batch.y[batch.
→˓train_mask])
loss.backward()
optimizer.step()

Validation
val_loss += criterion(out[batch.val_mask], batch.y[batch.val_mask])
val_acc += accuracy(out[batch.val_mask].argmax(dim=1), batch.y[batch.
→˓val_mask])

Print metrics every 10 epochs
if epoch % 20 == 0:
print(f'Epoch {epoch:>3} | Train Loss: {loss/len(train_loader):.3f} |␣
→˓Train Acc: {acc/len(train_loader)*100:>6.2f}% | Val Loss: {val_loss/len(train_loader):.
→˓2f} | Val Acc: {val_acc/len(train_loader)*100:.2f}%')

@torch.no_grad()
def test(self, data):
self.eval()
out = self(data.x, data.edge_index)
acc = accuracy(out.argmax(dim=1)[data.test_mask], data.y[data.test_mask])
return acc

1.34 Graph Equations

Explaining the graph neural networks equations

308 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

1.34.1 GCN layer

Semi-Supervised Classification with Graph Convolutional Networks https://arxiv.org/pdf/1609.02907.pdf

ℎ
(𝑙+1)
𝑖 = 𝜎

⎛⎝∑︁
𝑗∈𝒩𝑖

1

𝑐𝑖𝑗
ℎ
(𝑙)
𝑗 𝑊 (𝑙)

⎞⎠
where (+) denotes a trainable weight matrix of shape [num_output_features, num_input_features] and , refers to a fixed
normalization coefficient for each edge.

PyG implements this layer via GCNConv

1.35 Pytorch Fundamental

PyTorch allows you to manipulate and process data and write machine learning algorithms using Python code.

import torch
import numpy as np

torch.__version__

'2.2.2+cu121'

1.35.1 Tensors

Tensors are the fundamental building block of machine learning.

For example, you could represent an image as a tensor with shape [3, 224, 224] which would mean [colour_channels,
height, width], as in the image has 3 colour channels (red, green, blue), a height of 224 pixels and a width of 224 pixels.

1.35. Pytorch Fundamental 309

ml_notes.akkefa.com, Release 0.0.1

Scalar

Scalar
scalar = torch.tensor(7)
scalar

tensor(7)

scalar.shape

torch.Size([])

We can check the dimensions of a tensor
scalar.ndim

0

If we wan to retrieve the value of a scalar tensor, we can use the .item() method
scalar.item()

7

Vectors

vector = torch.tensor([7, 7])
vector

tensor([7, 7])

Check the number of dimensions of vector

You can tell the number of dimensions a tensor in PyTorch has by the number of square
brackets on the outside ([) and you only need to count one side.
vector.ndim

1

The shape tells you how the elements inside them are arranged.
vector.shape

torch.Size([2])

310 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Matrix

Matrix
MATRIX = torch.tensor([[7, 8],

[9, 10]])
MATRIX

tensor([[7, 8],
[9, 10]])

Wow! More numbers! Matrices are as flexible as vectors, except they've got an extra␣
→˓dimension.

MATRIX.ndim

2

MATRIX.shape

torch.Size([2, 2])

Tensor

I want to stress that tensors can represent almost anything.

TENSOR = torch.tensor([[[1, 2, 3],
[3, 6, 9],
[2, 4, 5]]])

TENSOR

tensor([[[1, 2, 3],
[3, 6, 9],
[2, 4, 5]]])

The one we just created could be the sales numbers for a steak and almond butter store (two of my favourite foods).

1.35. Pytorch Fundamental 311

ml_notes.akkefa.com, Release 0.0.1

TENSOR.ndim, TENSOR.shape

(3, torch.Size([1, 3, 3]))

The dimensions go outer to inner.

That means there’s 1 dimension of 3 by 3.

Note: You might’ve noticed me using lowercase letters for scalar and vector and uppercase letters for MATRIX and
TENSOR. This was on purpose. In practice, you’ll often see scalars and vectors denoted as lowercase letters such as y
or a. And matrices and tensors denoted as uppercase letters such as X or W.

You also might notice the names martrix and tensor used interchangably. This is common. Since in PyTorch you’re
often dealing with torch.Tensor’s (hence the tensor name), however, the shape and dimensions of what’s inside will
dictate what it actually is.

312 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

1.35.2 Random tensors

But when building machine learning models with PyTorch, it’s rare you’ll create tensors by hand (like what we’ve being
doing).

Instead, a machine learning model often starts out with large random tensors of numbers and adjusts these random
numbers as it works through data to better represent it.

In essence:

Start with random numbers -> look at data -> update random numbers -> look at data -> update random numbers. . .

Create a random tensor of size (3, 4)
random_tensor = torch.rand(size=(3, 4))
random_tensor, random_tensor.dtype, random_tensor.shape , random_tensor.ndim

(tensor([[0.6827, 0.3822, 0.6997, 0.9666],
[0.7431, 0.4283, 0.4569, 0.7674],
[0.0919, 0.4626, 0.7733, 0.9259]]),

torch.float32,
torch.Size([3, 4]),
2)

The flexibility of torch.rand() is that we can adjust the size to be whatever we want.

For example, say you wanted a random tensor in the common image shape of [224, 224, 3] ([height, width,
color_channels])

1.35. Pytorch Fundamental 313

ml_notes.akkefa.com, Release 0.0.1

Create a random tensor of size (224, 224, 3)
random_image_size_tensor = torch.rand(size=(224, 224, 3))
random_image_size_tensor.shape, random_image_size_tensor.ndim

(torch.Size([224, 224, 3]), 3)

random_image_size_tensor = torch.rand(size=(1, 3, 3))
random_image_size_tensor, random_image_size_tensor.ndim

(tensor([[[0.8491, 0.2531, 0.7481],
[0.0545, 0.5116, 0.7442],
[0.5551, 0.2117, 0.4693]]]),

3)

Zeros and ones

Sometimes you’ll just want to fill tensors with zeros or ones.

This happens a lot with masking (like masking some of the values in one tensor with zeros to let a model know not to
learn them).

zeros = torch.zeros(size=(3, 4))
zeros, zeros.dtype

(tensor([[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]]),

torch.float32)

ones = torch.ones(size=(3, 4))
ones, ones.dtype

(tensor([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]]),

torch.float32)

Create a range of values 0 to 10
zero_to_ten = torch.arange(start=0, end=10, step=1)
zero_to_ten

tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Can also create a tensor of zeros similar to another tensor
ten_zeros = torch.zeros_like(input=zero_to_ten) # will have same shape
ten_zeros

tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

314 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

1.35.3 Tensor datatypes

There are many different tensor datatypes available in PyTorch.

Some are specific for CPU and some are better for GPU.

Generally if you see torch.cuda anywhere, the tensor is being used for GPU (since Nvidia GPUs use a computing toolkit
called CUDA).

The most common type (and generally the default) is torch.float32 or torch.float.

This is referred to as “32-bit floating point”.

But there’s also 16-bit floating point (torch.float16 or torch.half) and 64-bit floating point (torch.float64 or torch.double).

And to confuse things even more there’s also 8-bit, 16-bit, 32-bit and 64-bit integers.

Plus more!

Note: An integer is a flat round number like 7 whereas a float has a decimal 7.0.

The reason for all of these is to do with precision in computing.

Precision is the amount of detail used to describe a number.

The higher the precision value (8, 16, 32), the more detail and hence data used to express a number.

This matters in deep learning and numerical computing because you’re making so many operations, the more detail
you have to calculate on, the more compute you have to use.

So lower precision datatypes are generally faster to compute on but sacrifice some performance on evaluation metrics
like accuracy (faster to compute but less accurate).

Default datatype for tensors is float32
float_32_tensor = torch.tensor([3.0, 6.0, 9.0],

dtype=None, # defaults to None, which is torch.float32 or␣
→˓whatever datatype is passed

device=None, # defaults to None, which uses the default␣
→˓tensor type

requires_grad=False) # if True, operations performed on␣
→˓the tensor are recorded

float_32_tensor.shape, float_32_tensor.dtype, float_32_tensor.device

(torch.Size([3]), torch.float32, device(type='cpu'))

Aside from shape issues (tensor shapes don’t match up), two of the other most common issues you’ll come across in
PyTorch are datatype and device issues.

For example, one of tensors is torch.float32 and the other is torch.float16 (PyTorch often likes tensors to be the same
format).

Or one of your tensors is on the CPU and the other is on the GPU (PyTorch likes calculations between tensors to be on
the same device).

We’ll see more of this device talk later on.

For now let’s create a tensor with dtype=torch.float16.

float_16_tensor = torch.tensor([3.0, 6.0, 9.0],
dtype=torch.float16) # torch.half would also work

(continues on next page)

1.35. Pytorch Fundamental 315

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

float_16_tensor.dtype

torch.float16

When you run into issues in PyTorch, it’s very often one to do with one of the three attributes above. So when the error
messages show up, sing yourself a little song called “what, what, where”:

“what shape are my tensors? what datatype are they and where are they stored? what shape, what datatype, where
where where”

1.35.4 Tensor Operations

In deep learning, data (images, text, video, audio, protein structures, etc) gets represented as tensors.

A model learns by investigating those tensors and performing a series of operations (could be 1,000,000s+) on tensors
to create a representation of the patterns in the input data.

These operations are often a wonderful dance between:

Addition Substraction Multiplication (element-wise) Division Matrix multiplication And that’s it. Sure there are a few
more here and there but these are the basic building blocks of neural networks.

Addition & Multiply

Create a tensor of values and add a number to it
tensor = torch.tensor([1, 2, 3])
tensor + 10

tensor([11, 12, 13])

Multiply it by 10
tensor * 10

tensor([10, 20, 30])

Tensors don't change unless reassigned
tensor

tensor([1, 2, 3])

Subtract and reassign
tensor = tensor - 10
tensor

tensor([-9, -8, -7])

Can also use torch functions
torch.multiply(tensor, 10)

316 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

tensor([-90, -80, -70])

Element-wise multiplication (each element multiplies its equivalent, index 0->0, 1->1,␣
→˓2->2)
print(tensor, "*", tensor)
print("Equals:", tensor * tensor)

tensor([-9, -8, -7]) * tensor([-9, -8, -7])
Equals: tensor([81, 64, 49])

torch.tensor([1, 2, 3]) * torch.tensor([1, 2])

This will create an error ""the size of tensor a (3) must match the size of tensor b␣
→˓(2) at non-singleton dimension 0"

Matrix multiplication

Matrix multiplication (is all you need)

PyTorch implements matrix multiplication functionality in the torch.matmul() method.

The main two rules for matrix multiplication to remember are:

The inner dimensions must match: (3, 2) @ (3, 2) won’t work (2, 3) @ (3, 2) will work (3, 2) @ (2, 3) will work The
resulting matrix has the shape of the outer dimensions: (2, 3) @ (3, 2) -> (2, 2) (3, 2) @ (2, 3) -> (3, 3)

tensor = torch.tensor([1, 2, 3])
tensor.shape

torch.Size([3])

Element-wise matrix multiplication
tensor * tensor

tensor([1, 4, 9])

Matrix multiplication
torch.matmul(tensor, tensor)
torch.mm(tensor, tensor)

tensor(14)

Can also use the "@" symbol for matrix multiplication, though not recommended
tensor @ tensor

tensor(14)

%%time
torch.matmul(tensor, tensor)

1.35. Pytorch Fundamental 317

ml_notes.akkefa.com, Release 0.0.1

CPU times: user 133 µs, sys: 20 µs, total: 153 µs
Wall time: 126 µs

tensor(14)

One of the most common errors in deep learning (shape errors)

Because much of deep learning is multiplying and performing operations on matrices and matrices have a strict rule
about what shapes and sizes can be combined, one of the most common errors you’ll run into in deep learning is shape
mismatches.

Shapes need to be in the right way
tensor_A = torch.tensor([[1, 2],

[3, 4],
[5, 6]], dtype=torch.float32)

tensor_B = torch.tensor([[7, 10],
[8, 11],
[9, 12]], dtype=torch.float32)

tensor_A.shape, tensor_B.shape
torch.matmul(tensor_A, tensor_B) # (this will error)

(torch.Size([3, 2]), torch.Size([3, 2]))

One of the ways to do this is with a transpose (switch the dimensions of a given␣
→˓tensor).
print(f"Original shapes: tensor_A = {tensor_A.shape}, tensor_B = {tensor_B.shape}\n")
print(f"New shapes: tensor_A = {tensor_A.shape} (same as above), tensor_B.T = {tensor_B.
→˓T.shape}\n")
print(f"Multiplying: {tensor_A.shape} * {tensor_B.T.shape} <- inner dimensions match\n")
print("Output:\n")
output = torch.matmul(tensor_A, tensor_B.T)
print(output)
print(f"\nOutput shape: {output.shape}")

Original shapes: tensor_A = torch.Size([3, 2]), tensor_B = torch.Size([3, 2])

New shapes: tensor_A = torch.Size([3, 2]) (same as above), tensor_B.T = torch.Size([2,␣
→˓3])

Multiplying: torch.Size([3, 2]) * torch.Size([2, 3]) <- inner dimensions match

Output:

tensor([[27., 30., 33.],
[61., 68., 75.],
[95., 106., 117.]])

Output shape: torch.Size([3, 3])

318 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

torch.mm is a shortcut for matmul
A matrix multiplication like this is also referred to as the dot product of two␣
→˓matrices.
torch.mm(tensor_A, tensor_B.T)

tensor([[27., 30., 33.],
[61., 68., 75.],
[95., 106., 117.]])

Neural networks are full of matrix multiplications and dot products.

The torch.nn.Linear() module (we’ll see this in action later on), also known as a feed-forward layer or fully connected
layer, implements a matrix multiplication between an input x and a weights matrix A.

y= xAT+b

Where:

x is the input to the layer (deep learning is a stack of layers like torch.nn.Linear() and others on top of each other). A is
the weights matrix created by the layer, this starts out as random numbers that get adjusted as a neural network learns
to better represent patterns in the data (notice the “T”, that’s because the weights matrix gets transposed). Note: You
might also often see W or another letter like X used to showcase the weights matrix. b is the bias term used to slightly
offset the weights and inputs. y is the output (a manipulation of the input in the hopes to discover patterns in it). This
is a linear function (you may have seen something like 𝑦 = 𝑚𝑥 + 𝑏 in high school or elsewhere), and can be used to
draw a straight line!

Let’s play around with a linear layer.

Try changing the values of in_features and out_features below and see what happens.

Do you notice anything to do with the shapes?

tensor_A

tensor([[1., 2.],
[3., 4.],
[5., 6.]])

Since the linear layer starts with a random weights matrix, let's make it reproducible␣
→˓(more on this later)
torch.manual_seed(42)
This uses matrix multiplication
linear = torch.nn.Linear(in_features=2, # in_features = matches inner dimension of input

out_features=6) # out_features = describes outer value
x = tensor_A
output = linear(x)
print(f"Input shape: {x.shape}\n")
print(f"Output:\n{output}\n\nOutput shape: {output.shape}")

Input shape: torch.Size([3, 2])

Output:
tensor([[2.2368, 1.2292, 0.4714, 0.3864, 0.1309, 0.9838],

[4.4919, 2.1970, 0.4469, 0.5285, 0.3401, 2.4777],
[6.7469, 3.1648, 0.4224, 0.6705, 0.5493, 3.9716]],

(continues on next page)

1.35. Pytorch Fundamental 319

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

grad_fn=<AddmmBackward0>)

Output shape: torch.Size([3, 6])

Finding the min, max, mean, sum
x = torch.arange(0, 100, 10)
x

tensor([0, 10, 20, 30, 40, 50, 60, 70, 80, 90])

print(f"Minimum: {x.min()}")
print(f"Maximum: {x.max()}")
print(f"Mean: {x.mean()}") # this will error
print(f"Mean: {x.type(torch.float32).mean()}") # won't work without float datatype
print(f"Sum: {x.sum()}")

Minimum: 0
Maximum: 90
Mean: 45.0
Sum: 450

torch.max(x), torch.min(x), torch.mean(x.type(torch.float32)), torch.sum(x)

(tensor(90), tensor(0), tensor(45.), tensor(450))

Positional min/max

You can also find the index of a tensor where the max or minimum occurs with torch.argmax() and torch.argmin()
respectively.

This is helpful incase you just want the position where the highest (or lowest) value is and not the actual value itself
(we’ll see this in a later section when using the softmax activation function).

Create a tensor
tensor = torch.arange(10, 100, 10)
print(f"Tensor: {tensor}")

Returns index of max and min values
print(f"Index where max value occurs: {tensor.argmax()}")
print(f"Index where min value occurs: {tensor.argmin()}")

Tensor: tensor([10, 20, 30, 40, 50, 60, 70, 80, 90])
Index where max value occurs: 8
Index where min value occurs: 0

320 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Reshaping, stacking, squeezing and unsqueezing

Because deep learning models (neural networks) are all about manipulating tensors in some way. And because of the
rules of matrix multiplication, if you’ve got shape mismatches, you’ll run into errors. These methods help you make
the right elements of your tensors are mixing with the right elements of other tensors.

x = torch.arange(1., 8.)
x, x.shape

(tensor([1., 2., 3., 4., 5., 6., 7.]), torch.Size([7]))

Add an extra dimension
x_reshaped = x.reshape(1, 7)
x_reshaped, x_reshaped.shape

(tensor([[1., 2., 3., 4., 5., 6., 7.]]), torch.Size([1, 7]))

z = x.view(1, 7)
z, z.shape

(tensor([[1., 2., 3., 4., 5., 6., 7.]]), torch.Size([1, 7]))

Remember though, changing the view of a tensor with torch.view() really only creates a new view of the same tensor.

So changing the view changes the original tensor too.

Changing z changes x
z[:, 0] = 5
z, x

(tensor([[5., 2., 3., 4., 5., 6., 7.]]), tensor([5., 2., 3., 4., 5., 6., 7.]))

if we wanted to stack our new tensor on top of itself five times, we could do so with␣
→˓torch.stack().

Stack tensors on top of each other
x_stacked = torch.stack([x, x, x, x], dim=0) # try changing dim to dim=1 and see what␣
→˓happens
x_stacked

tensor([[5., 2., 3., 4., 5., 6., 7.],
[5., 2., 3., 4., 5., 6., 7.],
[5., 2., 3., 4., 5., 6., 7.],
[5., 2., 3., 4., 5., 6., 7.]])

How about removing all single dimensions from a tensor?

To do so you can use torch.squeeze() (I remember this as squeezing the tensor to only have dimensions over 1).

print(f"Previous tensor: {x_reshaped}")
print(f"Previous shape: {x_reshaped.shape}")

(continues on next page)

1.35. Pytorch Fundamental 321

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

Remove extra dimension from x_reshaped
x_squeezed = x_reshaped.squeeze()
print(f"\nNew tensor: {x_squeezed}")
print(f"New shape: {x_squeezed.shape}")

Previous tensor: tensor([[5., 2., 3., 4., 5., 6., 7.]])
Previous shape: torch.Size([1, 7])

New tensor: tensor([5., 2., 3., 4., 5., 6., 7.])
New shape: torch.Size([7])

And to do the reverse of torch.squeeze() you can use torch.unsqueeze() to add a␣
→˓dimension value of 1 at a specific index.

print(f"Previous tensor: {x_squeezed}")
print(f"Previous shape: {x_squeezed.shape}")

Add an extra dimension with unsqueeze
x_unsqueezed = x_squeezed.unsqueeze(dim=0)
print(f"\nNew tensor: {x_unsqueezed}")
print(f"New shape: {x_unsqueezed.shape}")

Previous tensor: tensor([5., 2., 3., 4., 5., 6., 7.])
Previous shape: torch.Size([7])

New tensor: tensor([[5., 2., 3., 4., 5., 6., 7.]])
New shape: torch.Size([1, 7])

You can also rearrange the order of axes values with torch.permute(input, dims), where the input gets turned into a
view with new dims.

Create tensor with specific shape
x_original = torch.rand(size=(224, 224, 3))

Permute the original tensor to rearrange the axis order
x_permuted = x_original.permute(2, 0, 1) # shifts axis 0->1, 1->2, 2->0

print(f"Previous shape: {x_original.shape}")
print(f"New shape: {x_permuted.shape}")

Previous shape: torch.Size([224, 224, 3])
New shape: torch.Size([3, 224, 224])

322 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

1.35.5 Indexing

Sometimes you’ll want to select specific data from tensors (for example, only the first column or second row).

x = torch.arange(1, 10).reshape(1, 3, 3)
x, x.shape

(tensor([[[1, 2, 3],
[4, 5, 6],
[7, 8, 9]]]),

torch.Size([1, 3, 3]))

Indexing values goes outer dimension -> inner dimension (check out the square brackets).

Let's index bracket by bracket
print(f"First square bracket:\n{x[0]}")
print(f"Second square bracket: {x[0][0]}")
print(f"Third square bracket: {x[0][0][0]}")

First square bracket:
tensor([[1, 2, 3],

[4, 5, 6],
[7, 8, 9]])

Second square bracket: tensor([1, 2, 3])
Third square bracket: 1

You can also use : to specify “all values in this dimension” and then use a comma (,) to add another dimension.

x[:]

tensor([[[1, 2, 3],
[4, 5, 6],
[7, 8, 9]]])

x[:,:,:,]

tensor([[[1, 2, 3],
[4, 5, 6],
[7, 8, 9]]])

Get all values of 0th dimension and the 0 index of 1st dimension
x[:, 0]

tensor([[1, 2, 3]])

Get all values of 0th & 1st dimensions but only index 1 of 2nd dimension
x[:, :, 1]

tensor([[2, 5, 8]])

1.35. Pytorch Fundamental 323

ml_notes.akkefa.com, Release 0.0.1

Get all values of the 0 dimension but only the 1 index value of the 1st and 2nd␣
→˓dimension
x[:, 1, 1]

tensor([5])

Get index 0 of 0th and 1st dimension and all values of 2nd dimension
x[0, 0, :] # same as x[0][0]

tensor([1, 2, 3])

1.35.6 Pytorch Best Practise

You can also use torch.as_tensor() to convert a numpy array to a torch tensor, This will not create a new copy of the
data

a = np.random.rand(3, 3)
Bad way
t1 = torch. tensor(a)

Good way
t2 = torch.as_tensor(a)
t3 = torch.from_numpy(a)

Avoid cpu, item() these will use functions to tranfer data between devices

t= torch.rand(2,2)
bad way
t.cpu ()
t[0][0].item()
t. numpy ()

good way
t.detach ()

tensor([[0.8016, 0.3649],
[0.6286, 0.9663]])

Create tensor direclty on GPU

bad way
t = torch.rand(2,2).cuda()

good way
t = torch. rand(2,2, device="cuda")

324 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

1.36 Pytorch Workflow

The essence of machine learning and deep learning is to take some data from the past, build an algorithm (like a neural
network) to discover patterns in it and use the discoverd patterns to predict the future.

import torch
import torch.nn as nn
import matplotlib.pyplot as plt

torch.__version__

'2.2.2+cu121'

1.36.1 Data preparing and loading

I want to stress that “data” in machine learning can be almost anything you can imagine

Machine learning is a game of two parts:

• Turn your data, whatever it is, into numbers (a representation).

• Pick or build a model to learn the representation as best as possible.

1.36. Pytorch Workflow 325

ml_notes.akkefa.com, Release 0.0.1

Create *known* parameters
weight = 0.7
bias = 0.3

Create data
start = 0
end = 1
step = 0.02
X = torch.arange(start, end, step).unsqueeze(dim=1)
y = weight * X + bias

X[:10], y[:10]

(tensor([[0.0000],
[0.0200],
[0.0400],
[0.0600],
[0.0800],
[0.1000],
[0.1200],
[0.1400],
[0.1600],
[0.1800]]),

tensor([[0.3000],
[0.3140],
[0.3280],
[0.3420],
[0.3560],
[0.3700],
[0.3840],
[0.3980],
[0.4120],
[0.4260]]))

Create train/test split
train_split = int(0.8 * len(X)) # 80% of data used for training set, 20% for testing
print(train_split)
X_train, y_train = X[:train_split], y[:train_split]
X_test, y_test = X[train_split:], y[train_split:]

len(X_train), len(y_train), len(X_test), len(y_test)

40

(40, 40, 10, 10)

def plot_predictions(train_data=X_train,
train_labels=y_train,
test_data=X_test,
test_labels=y_test,
predictions=None):

(continues on next page)

326 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

"""
Plots training data, test data and compares predictions.
"""
plt.figure(figsize=(10, 7))

Plot training data in blue
plt.scatter(train_data, train_labels, c="b", s=4, label="Training data")

Plot test data in green
plt.scatter(test_data, test_labels, c="g", s=4, label="Testing data")

if predictions is not None:
Plot the predictions in red (predictions were made on the test data)
plt.scatter(test_data, predictions, c="r", s=4, label="Predictions")

Show the legend
plt.legend(prop={"size": 14});

plot_predictions()

1.36. Pytorch Workflow 327

ml_notes.akkefa.com, Release 0.0.1

1.36.2 Build model

Now we’ve got some data, let’s build a model to use the blue dots to predict the green dots.

Let’s replicate a standard linear regression model using pure PyTorch.

Create a Linear Regression model class
class LinearRegressionModel(nn.Module): # <- almost everything in PyTorch is a nn.Module␣
→˓(think of this as neural network lego blocks)
def __init__(self):

super().__init__()
self.weights = nn.Parameter(torch.randn(1, # <- start with random weights (this␣

→˓will get adjusted as the model learns)
dtype=torch.float), # <- PyTorch loves␣

→˓float32 by default
requires_grad=True) # <- can we update this value␣

→˓with gradient descent?)

self.bias = nn.Parameter(torch.randn(1, # <- start with random bias (this will␣
→˓get adjusted as the model learns)

dtype=torch.float), # <- PyTorch loves␣
→˓float32 by default

requires_grad=True) # <- can we update this value with␣
→˓gradient descent?))

Forward defines the computation in the model
def forward(self, x: torch.Tensor) -> torch.Tensor: # <- "x" is the input data (e.g.␣

→˓training/testing features)
return self.weights * x + self.bias # <- this is the linear regression formula␣

→˓(y = m*x + b)

Set manual seed since nn.Parameter are randomly initialzied
torch.manual_seed(42)

Create an instance of the model (this is a subclass of nn.Module that contains nn.
→˓Parameter(s))
model_0 = LinearRegressionModel()

Check the nn.Parameter(s) within the nn.Module subclass we created
list(model_0.parameters())

[Parameter containing:
tensor([0.3367], requires_grad=True),
Parameter containing:
tensor([0.1288], requires_grad=True)]

We can also get the state (what the model contains) of the model using .state_dict().

List named parameters
model_0.state_dict()

OrderedDict([('weights', tensor([0.3367])), ('bias', tensor([0.1288]))])

Notice how the values for weights and bias from model_0.state_dict() come out as random float tensors?

328 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

This is becuase we initialized them above using torch.randn().

Essentially we want to start from random parameters and get the model to update them towards parameters that fit our
data best (the hardcoded weight and bias values we set when creating our straight line data).

1.36.3 torch.inference_mode()

To check this we can pass it the test data X_test to see how closely it predicts y_test.

When we pass data to our model, it’ll go through the model’s forward() method and produce a result using the compu-
tation

Make predictions with model
with torch.inference_mode():

y_preds = model_0(X_test)

Note: in older PyTorch code you might also see torch.no_grad()
with torch.no_grad():
y_preds = model_0(X_test)

You probably noticed we used torch.inference_mode() as a context manager (that’s what the with
torch.inference_mode(): is) to make the predictions.

As the name suggests, torch.inference_mode() is used when using a model for inference (making predictions).

torch.inference_mode() turns off a bunch of things (like gradient tracking, which is necessary for training but not for
inference) to make forward-passes (data going through the forward() method) faster.

Check the predictions
print(f"Number of testing samples: {len(X_test)}")
print(f"Number of predictions made: {len(y_preds)}")
print(f"Predicted values:\n{y_preds}")

Number of testing samples: 10
Number of predictions made: 10
Predicted values:
tensor([[0.3982],

[0.4049],
[0.4116],
[0.4184],
[0.4251],
[0.4318],
[0.4386],
[0.4453],
[0.4520],
[0.4588]])

plot_predictions(predictions=y_preds)

1.36. Pytorch Workflow 329

ml_notes.akkefa.com, Release 0.0.1

y_test - y_preds

This make sense though when you remember our model is just using random parameter␣
→˓values to make predictions.

tensor([[0.4618],
[0.4691],
[0.4764],
[0.4836],
[0.4909],
[0.4982],
[0.5054],
[0.5127],
[0.5200],
[0.5272]])

330 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

1.36.4 loss function and optimizer in PyTorch

For our model to update its parameters on its own, we’ll need to add a few more things to our recipe.

And that’s a loss function as well as an optimizer.

Let’s create a loss function and an optimizer we can use to help improve our model.

Depending on what kind of problem you’re working on will depend on what loss function and what optimizer you use.

However, there are some common values, that are known to work well such as the SGD (stochastic gradient descent)
or Adam optimizer. And the MAE (mean absolute error) loss function for regression problems (predicting a number)
or binary cross entropy loss function for classification problems (predicting one thing or another).

For our problem, since we’re predicting a number, let’s use MAE (which is under torch.nn.L1Loss()) in PyTorch as our
loss function.

Mean absolute error (MAE, in PyTorch: torch.nn.L1Loss) measures the absolute difference between two points (pre-
dictions and labels) and then takes the mean across all examples.

And we’ll use SGD, torch.optim.SGD(params, lr) where:

params is the target model parameters you’d like to optimize (e.g. the weights and bias values we randomly set before).

lr is the learning rate you’d like the optimizer to update the parameters at, higher means the optimizer will try larger
updates (these can sometimes be too large and the optimizer will fail to work), lower means the optimizer will try
smaller updates (these can sometimes be too small and the optimizer will take too long to find the ideal values).

The learning rate is considered a hyperparameter (because it’s set by a machine learning engineer). Common starting
values for the learning rate are 0.01, 0.001, 0.0001, however, these can also be adjusted over time (this is called learning
rate scheduling). Woah, that’s a lot, let’s see it in code.

Create the loss function
loss_fn = nn.L1Loss() # MAE loss is same as L1Loss

Create the optimizer
(continues on next page)

1.36. Pytorch Workflow 331

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

optimizer = torch.optim.SGD(params=model_0.parameters(), # parameters of target model to␣
→˓optimize

lr=0.01) # learning rate (how much the optimizer should␣
→˓change parameters at each step, higher=more (less stable), lower=less (might take a␣
→˓long time))

Creating an optimization loop in PyTorch

The training loop involves the model going through the training data and learning the relationships between the features
and labels.

The testing loop involves going through the testing data and evaluating how good the patterns are that the model learned
on the training data (the model never see’s the testing data during training).

Num-
ber

Step name What does it do? Code exam-
ple

1 Forward pass The model goes through all of the training data once, performing its
forward() function calculations.

model(x_train)

2 Calculate the
loss

The model’s outputs (predictions) are compared to the ground truth and
evaluated to see how wrong they are.

loss =
loss_fn(y_pred,
y_train)

3 Zero gradients The optimizers gradients are set to zero (they are accumulated by default)
so they can be recalculated for the specific training step.

optimizer.
zero_grad()

4 Perform back-
propagation on
the loss

Computes the gradient of the loss with respect for every model parameter
to be updated (each parameter with requires_grad=True). This is
known as backpropagation, hence “backwards”.

loss.
backward()

5 Update the
optimizer
(gradient
descent)

Update the parameters with requires_grad=True with respect to the
loss gradients in order to improve them.

optimizer.
step()

Note: The above is just one example of how the steps could be ordered or described. With experience
you’ll find making PyTorch training loops can be quite flexible.

332 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

And on the ordering of things, the above is a good default order but you may see slightly different orders.
Some rules of thumb:

• Calculate the loss (loss = ...) before performing backpropagation on it (loss.backward()).

• Zero gradients (optimizer.zero_grad()) before stepping them (optimizer.step()).

• Step the optimizer (optimizer.step()) after performing backpropagation on the loss (loss.
backward()).

For resources to help understand what’s happening behind the scenes with backpropagation and gradient descent, see
the extra-curriculum section.

PyTorch testing loop

As for the testing loop (evaluating our model), the typical steps include:

Num-
ber

Step name What does it do? Code example

1 Forward pass The model goes through all of the training data once, per-
forming its forward() function calculations.

model(x_test)

2 Calculate the loss The model’s outputs (predictions) are compared to the
ground truth and evaluated to see how wrong they are.

loss =
loss_fn(y_pred,
y_test)

3 Calulate evaluation
metrics (optional)

Alongisde the loss value you may want to calculate other
evaluation metrics such as accuracy on the test set.

Custom functions

Notice the testing loop doesn’t contain performing backpropagation (loss.backward()) or stepping the optimizer
(optimizer.step()), this is because no parameters in the model are being changed during testing, they’ve already
been calculated. For testing, we’re only interested in the output of the forward pass through the model.

Let’s put all of the above together and train our model for 100 epochs (forward passes through the data) and we’ll
evaluate it every 10 epochs.

1.36. Pytorch Workflow 333

ml_notes.akkefa.com, Release 0.0.1

torch.manual_seed(42)

Set the number of epochs (how many times the model will pass over the training data)
epochs = 100

Create empty loss lists to track values
train_loss_values = []
test_loss_values = []
epoch_count = []

for epoch in range(epochs):
Training

Put model in training mode (this is the default state of a model)
model_0.train()

1. Forward pass on train data using the forward() method inside
y_pred = model_0(X_train)
print(y_pred)

2. Calculate the loss (how different are our models predictions to the ground␣
→˓truth)

loss = loss_fn(y_pred, y_train)

3. Zero grad of the optimizer
optimizer.zero_grad()

4. Loss backwards
loss.backward()

5. Progress the optimizer
optimizer.step()

Testing

Put the model in evaluation mode
model_0.eval()

with torch.inference_mode():
1. Forward pass on test data
test_pred = model_0(X_test)

2. Caculate loss on test data
test_loss = loss_fn(test_pred, y_test.type(torch.float)) # predictions come in␣

→˓torch.float datatype, so comparisons need to be done with tensors of the same type

Print out what's happening
if epoch % 10 == 0:

epoch_count.append(epoch)
train_loss_values.append(loss.detach().numpy())
test_loss_values.append(test_loss.detach().numpy())
print(f"Epoch: {epoch} | MAE Train Loss: {loss} | MAE Test Loss: {test_loss}

→˓")

334 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Epoch: 0 | MAE Train Loss: 0.31288138031959534 | MAE Test Loss: 0.48106518387794495
Epoch: 10 | MAE Train Loss: 0.1976713240146637 | MAE Test Loss: 0.3463551998138428
Epoch: 20 | MAE Train Loss: 0.08908725529909134 | MAE Test Loss: 0.21729660034179688
Epoch: 30 | MAE Train Loss: 0.053148526698350906 | MAE Test Loss: 0.14464017748832703
Epoch: 40 | MAE Train Loss: 0.04543796554207802 | MAE Test Loss: 0.11360953003168106
Epoch: 50 | MAE Train Loss: 0.04167863354086876 | MAE Test Loss: 0.09919948130846024
Epoch: 60 | MAE Train Loss: 0.03818932920694351 | MAE Test Loss: 0.08886633068323135
Epoch: 70 | MAE Train Loss: 0.03476089984178543 | MAE Test Loss: 0.0805937647819519
Epoch: 80 | MAE Train Loss: 0.03132382780313492 | MAE Test Loss: 0.07232122868299484
Epoch: 90 | MAE Train Loss: 0.02788739837706089 | MAE Test Loss: 0.06473556160926819

Plot the loss curves
plt.plot(epoch_count, train_loss_values, label="Train loss")
plt.plot(epoch_count, test_loss_values, label="Test loss")
plt.title("Training and test loss curves")
plt.ylabel("Loss")
plt.xlabel("Epochs")
plt.legend()

<matplotlib.legend.Legend at 0x7fbd348a5e10>

Find our model's learned parameters
print("The model learned the following values for weights and bias:")
print(model_0.state_dict())

(continues on next page)

1.36. Pytorch Workflow 335

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

print("\nAnd the original values for weights and bias are:")
print(f"weights: {weight}, bias: {bias}")

The model learned the following values for weights and bias:
OrderedDict([('weights', tensor([0.5784])), ('bias', tensor([0.3513]))])

And the original values for weights and bias are:
weights: 0.7, bias: 0.3

Wow! How cool is that?

Our model got very close to calculate the exact original values for weight and bias (and it would probably get even
closer if we trained it for longer).

Exercise: Try changing the epochs value above to 200, what happens to the loss curves and the weights and bias
parameter values of the model?

It’d likely never guess them perfectly (especially when using more complicated datasets) but that’s okay, often you can
do very cool things with a close approximation.

This is the whole idea of machine learning and deep learning, there are some ideal values that describe our data and
rather than figuring them out by hand, we can train a model to figure them out programmatically.

1.36.5 Inference

There are three things to remember when making predictions (also called performing inference) with a PyTorch model:

1. Set the model in evaluation mode (model.eval()).

2. Make the predictions using the inference mode context manager (with torch.inference_mode(): . . .).

3. All predictions should be made with objects on the same device (e.g. data and model on GPU only or data and
model on CPU only).

The first two items make sure all helpful calculations and settings PyTorch uses behind the scenes during training but
aren’t necessary for inference are turned off (this results in faster computation).

model_0.eval()

2. Setup the inference mode context manager
with torch.inference_mode():
3. Make sure the calculations are done with the model and data on the same device
in our case, we haven't setup device-agnostic code yet so our data and model are
on the CPU by default.
model_0.to(device)
X_test = X_test.to(device)
y_preds = model_0(X_test)

y_preds

tensor([[0.8141],
[0.8256],
[0.8372],
[0.8488],
[0.8603],
[0.8719],

(continues on next page)

336 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

[0.8835],
[0.8950],
[0.9066],
[0.9182]])

plot_predictions(predictions=y_preds)

1.36.6 Saving and loading a PyTorch model

If you’ve trained a PyTorch model, chances are you’ll want to save it and export it somewhere.

As in, you might train it on Google Colab or your local machine with a GPU but you’d like to now export it to some
sort of application where others can use it.

Or maybe you’d like to save your progress on a model and come back and load it back later.

For saving and loading models in PyTorch, there are three main methods you should be aware of (all of below have
been taken from the PyTorch saving and loading models guide):

1.36. Pytorch Workflow 337

ml_notes.akkefa.com, Release 0.0.1

PyTorch method What does it do?
torch.save Saves a serialzed object to disk using Python’s pickle utility. Models, tensors and various

other Python objects like dictionaries can be saved using torch.save.
torch.load Uses pickle’s unpickling features to deserialize and load pickled Python object files (like

models, tensors or dictionaries) into memory. You can also set which device to load the object
to (CPU, GPU etc).

torch.nn.
Module.
load_state_dict

Loads a model’s parameter dictionary (model.state_dict()) using a saved state_dict()
object.

Note: As stated in Python’s pickle documentation, the pickle module is not secure. That means you
should only ever unpickle (load) data you trust. That goes for loading PyTorch models as well. Only ever
use saved PyTorch models from sources you trust.

Saving a PyTorch model’s state_dict()

The recommended way for saving and loading a model for inference (making predictions) is by saving and loading a
model’s state_dict().

Let’s see how we can do that in a few steps:

We’ll create a directory for saving models to called models using Python’s pathlib module. We’ll create a file path to
save the model to. We’ll call torch.save(obj, f) where obj is the target model’s state_dict() and f is the filename of where
to save the model.

from pathlib import Path

1. Create models directory
MODEL_PATH = Path("models")
MODEL_PATH.mkdir(parents=True, exist_ok=True)

2. Create model save path
MODEL_NAME = "01_pytorch_workflow_model_0.pt"
MODEL_SAVE_PATH = MODEL_PATH / MODEL_NAME

3. Save the model state dict
print(f"Saving model to: {MODEL_SAVE_PATH}")
torch.save(obj=model_0.state_dict(), # only saving the state_dict() only saves the␣
→˓models learned parameters
f=MODEL_SAVE_PATH)

Check the saved file path
!ls -l models/

338 Chapter 1. Contents

https://pytorch.org/docs/stable/torch.html?highlight=save#torch.save
https://docs.python.org/3/library/pickle.html
https://pytorch.org/docs/stable/torch.html?highlight=torch%20load#torch.load
https://pytorch.org/docs/stable/generated/torch.nn.Module.html?highlight=load_state_dict#torch.nn.Module.load_state_dict
https://pytorch.org/docs/stable/generated/torch.nn.Module.html?highlight=load_state_dict#torch.nn.Module.load_state_dict
https://pytorch.org/docs/stable/generated/torch.nn.Module.html?highlight=load_state_dict#torch.nn.Module.load_state_dict
https://docs.python.org/3/library/pickle.html

ml_notes.akkefa.com, Release 0.0.1

Loading a saved PyTorch model’s state_dict()

Since we’ve now got a saved model state_dict() at models/01_pytorch_workflow_model_0.pt we can now load it in
using torch.nn.Module.load_state_dict(torch.load(f)) where f is the filepath of our saved model state_dict().

Why call torch.load() inside torch.nn.Module.load_state_dict()?

Because we only saved the model’s state_dict() which is a dictionary of learned parameters and not the entire model,
we first have to load the state_dict() with torch.load() and then pass that state_dict() to a new instance of our model
(which is a subclass of nn.Module).

Why not save the entire model?

Saving the entire model rather than just the state_dict() is more intuitive, however, to quote the PyTorch documentation:

The disadvantage of this approach (saving the whole model) is that the serialized data is bound to the specific classes
and the exact directory structure used when the model is saved. . .

Because of this, your code can break in various ways when used in other projects or after refactors.

So instead, we’re using the flexible method of saving and loading just the state_dict(), which again is basically a dic-
tionary of model parameters.

Let’s test it out by created another instance of LinearRegressionModel(), which is a subclass of torch.nn.Module and
will hence have the in-built method load_state_dit().

Instantiate a new instance of our model (this will be instantiated with random␣
→˓weights)
loaded_model_0 = LinearRegressionModel()

Load the state_dict of our saved model (this will update the new instance of our␣
→˓model with trained weights)
loaded_model_0.load_state_dict(torch.load(f=MODEL_SAVE_PATH))

1. Put the loaded model into evaluation mode
loaded_model_0.eval()

2. Use the inference mode context manager to make predictions
with torch.inference_mode():
loaded_model_preds = loaded_model_0(X_test)

Compare previous model predictions with loaded model predictions (these should be the␣
→˓same)
y_preds == loaded_model_preds

1.37 PyTorch Neural Network Classification

For example, you might want to:

1.37. PyTorch Neural Network Classification 339

ml_notes.akkefa.com, Release 0.0.1

Problem type What is it? Example
Binary classi-
fication

Target can be one of two op-
tions, e.g. yes or no

Predict whether or not someone has heart disease based on their
health parameters.

Multi-class
classification

Target can be one of more
than two options

Decide whether a photo of is of food, a person or a dog.

Multi-label
classification

Target can be assigned more
than one option

Predict what categories should be assigned to a Wikipedia article
(e.g. mathematics, science & philosohpy).

In this notebook, we’re going to work through a couple of different classification problems with PyTorch.

In other words, taking a set of inputs and predicting what class those set of inputs belong to.

1.37.1 Architecture

Before we get into writing code, let’s look at the general architecture of a classification neural network.

Hyperparameter Binary Classification Multiclass classification
Input layer shape
(in_features)

Same as number of features (e.g. 5 for age, sex, height,
weight, smoking status in heart disease prediction)

Same as binary classification

Hidden layer(s) Problem specific, minimum = 1, maximum = unlimited Same as binary classification
Neurons per hid-
den layer

Problem specific, generally 10 to 512 Same as binary classification

Output layer shape
(out_features)

1 (one class or the other) 1 per class (e.g. 3 for food, per-
son or dog photo)

Hidden layer acti-
vation

Usually ReLU (rectified linear unit) but can be many oth-
ers

Same as binary classification

Output activation Sigmoid (torch.sigmoid in PyTorch) Softmax (torch.softmax in
PyTorch)

Loss function Binary crossentropy (torch.nn.BCELoss in PyTorch) Cross entropy (torch.nn.
CrossEntropyLoss in Py-
Torch)

Optimizer SGD (stochastic gradient descent), Adam (see torch.
optim for more options)

Same as binary classification

Of course, this ingredient list of classification neural network components will vary depending on the problem you’re
working on.

But it’s more than enough to get started.

We’re going to gets hands-on with this setup throughout this notebook.

340 Chapter 1. Contents

https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html#torch.nn.ReLU
https://en.wikipedia.org/wiki/Activation_function#Table_of_activation_functions
https://en.wikipedia.org/wiki/Activation_function#Table_of_activation_functions
https://en.wikipedia.org/wiki/Sigmoid_function
https://pytorch.org/docs/stable/generated/torch.sigmoid.html
https://en.wikipedia.org/wiki/Softmax_function
https://pytorch.org/docs/stable/generated/torch.nn.Softmax.html
https://en.wikipedia.org/wiki/Cross_entropy#Cross-entropy_loss_function_and_logistic_regression
https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/optim.html
https://pytorch.org/docs/stable/optim.html

ml_notes.akkefa.com, Release 0.0.1

1.37.2 Make classification data

We’ll use the make_circles() method from Scikit-Learn to generate two circles with different coloured dots.

import torch

torch.__version__

'2.2.2+cu121'

from sklearn.datasets import make_circles

Make 1000 samples
n_samples = 1000

Create circles
X, y = make_circles(n_samples,

noise=0.03, # a little bit of noise to the dots
random_state=42) # keep random state so we get the same values

print(f"First 5 X features:\n{X[:5]}")
print(f"\nFirst 5 y labels:\n{y[:5]}")

First 5 X features:
[[0.75424625 0.23148074]
[-0.75615888 0.15325888]
[-0.81539193 0.17328203]
[-0.39373073 0.69288277]
[0.44220765 -0.89672343]]

First 5 y labels:
[1 1 1 1 0]

Make DataFrame of circle data
import pandas as pd
circles = pd.DataFrame({"X1": X[:, 0],

"X2": X[:, 1],
"label": y

})
circles.head(10)

X1 X2 label
0 0.754246 0.231481 1
1 -0.756159 0.153259 1
2 -0.815392 0.173282 1
3 -0.393731 0.692883 1
4 0.442208 -0.896723 0
5 -0.479646 0.676435 1
6 -0.013648 0.803349 1
7 0.771513 0.147760 1

(continues on next page)

1.37. PyTorch Neural Network Classification 341

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

8 -0.169322 -0.793456 1
9 -0.121486 1.021509 0

Check different labels
circles.label.value_counts()

label
1 500
0 500
Name: count, dtype: int64

Visualize with a plot
import matplotlib.pyplot as plt
plt.scatter(x=X[:, 0],

y=X[:, 1],
c=y,
cmap=plt.cm.RdYlBu);

342 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

1.37.3 Input and output shapes

One of the most common errors in deep learning is shape errors.

Mismatching the shapes of tensors and tensor operations with result in errors in your models.

We’re going to see plenty of these throughout the course.

And there’s no surefire way to making sure they won’t happen, they will.

What you can do instead is continaully familiarize yourself with the shape of the data you’re working with.

I like referring to it as input and output shapes.

Ask yourself:

“What shapes are my inputs and what shapes are my outputs?”

Check the shapes of our features and labels
X.shape, y.shape

((1000, 2), (1000,))

View the first example of features and labels
X_sample = X[0]
y_sample = y[0]
print(f"Values for one sample of X: {X_sample} and the same for y: {y_sample}")
print(f"Shapes for one sample of X: {X_sample.shape} and the same for y: {y_sample.shape}
→˓")

Values for one sample of X: [0.75424625 0.23148074] and the same for y: 1
Shapes for one sample of X: (2,) and the same for y: ()

X = torch.from_numpy(X).type(torch.float)
y = torch.from_numpy(y).type(torch.float)

View the first five samples
X[:5], y[:5]

(tensor([[0.7542, 0.2315],
[-0.7562, 0.1533],
[-0.8154, 0.1733],
[-0.3937, 0.6929],
[0.4422, -0.8967]]),

tensor([1., 1., 1., 1., 0.]))

Split data into train and test sets
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X,
y,
test_size=0.2, # 20% test, 80% train
random_state=42) # make the random␣

→˓split reproducible

len(X_train), len(X_test), len(y_train), len(y_test)

1.37. PyTorch Neural Network Classification 343

ml_notes.akkefa.com, Release 0.0.1

(800, 200, 800, 200)

1.37.4 Building a model

We’ll break it down into a few parts.

Setting up device agnostic code (so our model can run on CPU or GPU if it’s available). Constructing a model by
subclassing nn.Module. Defining a loss function and optimizer. Creating a training loop (this’ll be in the next section).

Standard PyTorch imports
from torch import nn

Make device agnostic code
device = "cuda" if torch.cuda.is_available() else "cpu"
device

'cpu'

How about we create a model?

We’ll want a model capable of handling our X data as inputs and producing something in the shape of our y data as
ouputs.

In other words, given X (features) we want our model to predict y (label).

This setup where you have features and labels is referred to as supervised learning. Because your data is telling your
model what the outputs should be given a certain input.

To create such a model it’ll need to handle the input and output shapes of X and y.

Remember how I said input and output shapes are important? Here we’ll see why.

Let’s create a model class that:

Subclasses nn.Module (almost all PyTorch models are subclasses of nn.Module). Creates 2 nn.Linear layers in the
constructor capable of handling the input and output shapes of X and y. Defines a forward() method containing the
forward pass computation of the model. Instantiates the model class and sends it to the target device.

1. Construct a model class that subclasses nn.Module
class CircleModelV0(nn.Module):

def __init__(self):
super().__init__()
2. Create 2 nn.Linear layers capable of handling X and y input and output␣

→˓shapes
self.layer_1 = nn.Linear(in_features=2, out_features=5) # takes in 2 features␣

→˓(X), produces 5 features
self.layer_2 = nn.Linear(in_features=5, out_features=1) # takes in 5 features,␣

→˓produces 1 feature (y)

3. Define a forward method containing the forward pass computation
def forward(self, x):

Return the output of layer_2, a single feature, the same shape as y
return self.layer_2(self.layer_1(x)) # computation goes through layer_1 first␣

→˓then the output of layer_1 goes through layer_2

(continues on next page)

344 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

4. Create an instance of the model and send it to target device
model_0 = CircleModelV0().to(device)
model_0

CircleModelV0(
(layer_1): Linear(in_features=2, out_features=5, bias=True)
(layer_2): Linear(in_features=5, out_features=1, bias=True)

)

self.layer_1 takes 2 input features in_features=2 and produces 5 output features out_features=5.

This is known as having 5 hidden units or neurons.

This layer turns the input data from having 2 features to 5 features.

Why do this?

This allows the model to learn patterns from 5 numbers rather than just 2 numbers, potentially leading to better outputs.

I say potentially because sometimes it doesn’t work.

The number of hidden units you can use in neural network layers is a hyperparameter (a value you can set yourself) and
there’s no set in stone value you have to use.

Generally more is better but there’s also such a thing as too much. The amount you choose will depend on your model
type and dataset you’re working with.

Since our dataset is small and simple, we’ll keep it small.

The only rule with hidden units is that the next layer, in our case, self.layer_2 has to take the same in_features as the
previous layer out_features.

That’s why self.layer_2 has in_features=5, it takes the out_features=5 from self.layer_1 and performs a linear compu-
tation on them, turning them into out_features=1 (the same shape as y).

You can also do the same as above using nn.Sequential.

nn.Sequential performs a forward pass computation of the input data through the layers in the order they appear.

Replicate CircleModelV0 with nn.Sequential
model_0 = nn.Sequential(

nn.Linear(in_features=2, out_features=5),
nn.Linear(in_features=5, out_features=1)

).to(device)

model_0

Sequential(
(0): Linear(in_features=2, out_features=5, bias=True)
(1): Linear(in_features=5, out_features=1, bias=True)

)

Make predictions with the model
untrained_preds = model_0(X_test.to(device))
print(f"Length of predictions: {len(untrained_preds)}, Shape: {untrained_preds.shape}")
print(f"Length of test samples: {len(y_test)}, Shape: {y_test.shape}")
print(f"\nFirst 10 predictions:\n{untrained_preds[:10]}")
print(f"\nFirst 10 test labels:\n{y_test[:10]}")

1.37. PyTorch Neural Network Classification 345

ml_notes.akkefa.com, Release 0.0.1

Length of predictions: 200, Shape: torch.Size([200, 1])
Length of test samples: 200, Shape: torch.Size([200])

First 10 predictions:
tensor([[0.1270],

[0.4738],
[-0.5532],
[0.3189],
[-0.1901],
[0.0187],
[0.7074],
[0.6017],
[-0.5675],
[0.5011]], grad_fn=<SliceBackward0>)

First 10 test labels:
tensor([1., 0., 1., 0., 1., 1., 0., 0., 1., 0.])

1.37.5 Setup loss function and optimizer

But different problem types require different loss functions.

For example, for a regression problem (predicting a number) you might used mean absolute error (MAE) loss.

And for a binary classification problem (like ours), you’ll often use binary cross entropy as the loss function.

However, the same optimizer function can often be used across different problem spaces.

For example, the stochastic gradient descent optimizer (SGD, torch.optim.SGD()) can be used for a range of prob-
lems, so can too the Adam optimizer (torch.optim.Adam()).

Loss function/Optimizer Problem type PyTorch Code
Stochastic Gradient Descent
(SGD) optimizer

Classification, regression,
many others.

torch.optim.SGD()

Adam Optimizer Classification, regression,
many others.

torch.optim.Adam()

Binary cross entropy loss Binary classification torch.nn.BCELossWithLogits or
torch.nn.BCELoss

Cross entropy loss Mutli-class classification torch.nn.CrossEntropyLoss
Mean absolute error (MAE) or L1
Loss

Regression torch.nn.L1Loss

Mean squared error (MSE) or L2
Loss

Regression torch.nn.MSELoss

Table of various loss functions and optimizers, there are more but these some common ones you’ll see.

Since we’re working with a binary classification problem, let’s use a binary cross entropy loss function.

Note: Recall a loss function is what measures how wrong your model predictions are, the higher the loss,
the worse your model.

Also, PyTorch documentation often refers to loss functions as “loss criterion” or “criterion”, these are all
different ways of describing the same thing.

PyTorch has two binary cross entropy implementations:

346 Chapter 1. Contents

https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a
https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.L1Loss.html
https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html#torch.nn.MSELoss

ml_notes.akkefa.com, Release 0.0.1

1. torch.nn.BCELoss() - Creates a loss function that measures the binary cross entropy between the target (label)
and input (features).

2. torch.nn.BCEWithLogitsLoss() - This is the same as above except it has a sigmoid layer (nn.Sigmoid)
built-in (we’ll see what this means soon).

Which one should you use?

The documentation for torch.nn.BCEWithLogitsLoss() states that it’s more numerically stable than using torch.
nn.BCELoss() after a nn.Sigmoid layer.

So generally, implementation 2 is a better option. However for advanced usage, you may want to separate the combi-
nation of nn.Sigmoid and torch.nn.BCELoss() but that is beyond the scope of this notebook.

Knowing this, let’s create a loss function and an optimizer.

For the optimizer we’ll use torch.optim.SGD() to optimize the model parameters with learning rate 0.1.

Note: There’s a discussion on the PyTorch forums about the use of nn.BCELoss vs. nn.
BCEWithLogitsLoss. It can be confusing at first but as with many things, it becomes easier with practice.

Create a loss function
loss_fn = nn.BCELoss() # BCELoss = no sigmoid built-in
loss_fn = nn.BCEWithLogitsLoss() # BCEWithLogitsLoss = sigmoid built-in

Create an optimizer
optimizer = torch.optim.SGD(params=model_0.parameters(),

lr=0.1)

Now let's also create an evaluation metric.
Calculate accuracy (a classification metric)
def accuracy_fn(y_true, y_pred):

correct = torch.eq(y_true, y_pred).sum().item() # torch.eq() calculates where two␣
→˓tensors are equal

acc = (correct / len(y_pred)) * 100
return acc

1.37.6 Train model

Okay, now we’ve got a loss function and optimizer ready to go, let’s train a model.

Going from raw model outputs to predicted labels (logits -> prediction probabilities -> prediction labels) Before we
the training loop steps, let’s see what comes out of our model during the forward pass (the forward pass is defined by
the forward() method).

To do so, let’s pass the model some data.

View the frist 5 outputs of the forward pass on the test data
y_logits = model_0(X_test.to(device))[:5]
y_logits

tensor([[0.1270],
[0.4738],
[-0.5532],
[0.3189],
[-0.1901]], grad_fn=<SliceBackward0>)

1.37. PyTorch Neural Network Classification 347

https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html
https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.Sigmoid.html
https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html
https://discuss.pytorch.org/t/bceloss-vs-bcewithlogitsloss/33586/4
https://discuss.pytorch.org/t/bceloss-vs-bcewithlogitsloss/33586/4

ml_notes.akkefa.com, Release 0.0.1

Since our model hasn’t been trained, these outputs are basically random.

But what are they?

They’re the output of our forward() method.

Which implements two layers of nn.Linear() which internally calls the following equation:

y = 𝑥 ·Weights𝑇 + bias

The raw outputs (unmodified) of this equation (y) and in turn, the raw outputs of our model are often referred to as
logits.

That’s what our model is outputing above when it takes in the input data (𝑥 in the equation or X_test in the code),
logits.

However, these numbers are hard to interpret.

We’d like some numbers that are comparable to our truth labels.

To get our model’s raw outputs (logits) into such a form, we can use the sigmoid activation function.

Let’s try it out.

Use sigmoid on model logits
y_pred_probs = torch.sigmoid(y_logits)
y_pred_probs

tensor([[0.5317],
[0.6163],
[0.3651],
[0.5790],
[0.4526]], grad_fn=<SigmoidBackward0>)

They’re now in the form of prediction probabilities (I usually refer to these as y_pred_probs), in other words, the values
are now how much the model thinks the data point belongs to one class or another.

In our case, since we’re dealing with binary classification, our ideal outputs are 0 or 1.

So these values can be viewed as a decision boundary.

The closer to 0, the more the model thinks the sample belongs to class 0, the closer to 1, the more the model thinks the
sample belongs to class 1.

Find the predicted labels (round the prediction probabilities)
y_preds = torch.round(y_pred_probs)

In full
y_pred_labels = torch.round(torch.sigmoid(model_0(X_test.to(device))[:5]))

Check for equality
print(torch.eq(y_preds.squeeze(), y_pred_labels.squeeze()))

Get rid of extra dimension
y_preds,y_preds.squeeze()

tensor([True, True, True, True, True])

348 Chapter 1. Contents

https://datascience.stackexchange.com/a/31045
https://pytorch.org/docs/stable/generated/torch.sigmoid.html

ml_notes.akkefa.com, Release 0.0.1

(tensor([[1.],
[1.],
[0.],
[1.],
[0.]], grad_fn=<RoundBackward0>),

tensor([1., 1., 0., 1., 0.], grad_fn=<SqueezeBackward0>))

Excellent! Now it looks like our model's predictions are in the same form as our truth␣
→˓labels (y_test)

y_test[:5]

tensor([1., 0., 1., 0., 1.])

Building a training and testing loop

Let’s start by training for 100 epochs and outputing the model’s progress every 10 epochs.

torch.manual_seed(42)

Set the number of epochs
epochs = 100

Put data to target device
X_train, y_train = X_train.to(device), y_train.to(device)
X_test, y_test = X_test.to(device), y_test.to(device)

Build training and evaluation loop
for epoch in range(epochs):

Training
model_0.train()

1. Forward pass (model outputs raw logits)
y_logits = model_0(X_train).squeeze() # squeeze to remove extra `1` dimensions, this␣

→˓won't work unless model and data are on same device
y_pred = torch.round(torch.sigmoid(y_logits)) # turn logits -> pred probs -> pred␣

→˓labls

2. Calculate loss/accuracy
loss = loss_fn(torch.sigmoid(y_logits), # Using nn.BCELoss you need torch.sigmoid()
y_train)
loss = loss_fn(y_logits, # Using nn.BCEWithLogitsLoss works with raw logits

y_train)
acc = accuracy_fn(y_true=y_train,

y_pred=y_pred)

3. Optimizer zero grad
optimizer.zero_grad()

4. Loss backwards
loss.backward()

(continues on next page)

1.37. PyTorch Neural Network Classification 349

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

5. Optimizer step
optimizer.step()

Testing
model_0.eval()
with torch.inference_mode():

1. Forward pass
test_logits = model_0(X_test).squeeze()
test_pred = torch.round(torch.sigmoid(test_logits))
2. Caculate loss/accuracy
test_loss = loss_fn(test_logits,

y_test)
test_acc = accuracy_fn(y_true=y_test,

y_pred=test_pred)

Print out what's happening every 10 epochs
if epoch % 10 == 0:

print(f"Epoch: {epoch} | Loss: {loss:.5f}, Accuracy: {acc:.2f}% | Test loss:
→˓{test_loss:.5f}, Test acc: {test_acc:.2f}%")

Epoch: 0 | Loss: 0.71595, Accuracy: 50.62% | Test loss: 0.73649, Test acc: 47.00%
Epoch: 10 | Loss: 0.70755, Accuracy: 51.00% | Test loss: 0.72460, Test acc: 47.00%
Epoch: 20 | Loss: 0.70263, Accuracy: 51.12% | Test loss: 0.71690, Test acc: 47.00%
Epoch: 30 | Loss: 0.69954, Accuracy: 51.00% | Test loss: 0.71160, Test acc: 47.00%
Epoch: 40 | Loss: 0.69752, Accuracy: 51.25% | Test loss: 0.70780, Test acc: 46.50%
Epoch: 50 | Loss: 0.69615, Accuracy: 51.50% | Test loss: 0.70499, Test acc: 46.00%
Epoch: 60 | Loss: 0.69521, Accuracy: 51.75% | Test loss: 0.70288, Test acc: 47.00%
Epoch: 70 | Loss: 0.69456, Accuracy: 51.75% | Test loss: 0.70127, Test acc: 47.00%
Epoch: 80 | Loss: 0.69410, Accuracy: 51.88% | Test loss: 0.70001, Test acc: 47.00%
Epoch: 90 | Loss: 0.69378, Accuracy: 51.75% | Test loss: 0.69903, Test acc: 47.50%

The accuracy barely moves above 50% on each data split.

And because we’re working with a balanced binary classification problem, it means our model is performing as good
as random guessing (with 500 samples of class 0 and class 1 a model predicting class 1 every single time would achieve
50% accuracy).

1.37.7 Evaluate the model

From the metrics it looks like our model is random guessing.

How could we investigate this further?

I’ve got an idea.

The data explorer’s motto!

“Visualize, visualize, visualize!”

Let’s make a plot of our model’s predictions, the data it’s trying to predict on and the decision boundary it’s creating
for whether something is class 0 or class 1.

To do so, we’ll write some code to download and import the helper_functions.py script from the Learn PyTorch for
Deep Learning repo.

350 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

It contains a helpful function called plot_decision_boundary() which creates a NumPy meshgrid to visually plot the
different points where our model is predicting certain classes.

We’ll also import plot_predictions() which we wrote in notebook 01 to use later.

In machine learning terms, our model is underfitting, meaning it’s not learning predictive patterns from the data.

How could we improve this?

1.37.8 Improving a model

Let’s try to fix our model’s underfitting problem.

Focusing specifically on the model (not the data), there are a few ways we could do this.

Model im-
provement
technique*

What does it do?

Add more lay-
ers

Each layer potentially increases the learning capabilities of the model with each layer being able
to learn some kind of new pattern in the data, more layers is often referred to as making your
neural network deeper.

Add more hid-
den units

Similar to the above, more hidden units per layer means a potential increase in learning capabil-
ities of the model, more hidden units is often referred to as making your neural network wider.

Fitting for
longer (more
epochs)

Your model might learn more if it had more opportunities to look at the data.

Changing the
activation
functions

Some data just can’t be fit with only straight lines (like what we’ve seen), using non-linear acti-
vation functions can help with this (hint, hint).

Change the
learning rate

Less model specific, but still related, the learning rate of the optimizer decides how much a
model should change its parameters each step, too much and the model overcorrects, too little
and it doesn’t learn enough.

Change the
loss function

Again, less model specific but still important, different problems require different loss functions.
For example, a binary cross entropy loss function won’t work with a multi-class classification
problem.

Use transfer
learning

Take a pretrained model from a problem domain similar to yours and adjust it to your own prob-
lem. We cover transfer learning in notebook 06.

Note: *because you can adjust all of these by hand, they’re referred to as hyperparameters.

And this is also where machine learning’s half art half science comes in, there’s no real way to know
here what the best combination of values is for your project, best to follow the data scientist’s motto of
“experiment, experiment, experiment”.

Let’s see what happens if we add an extra layer to our model, fit for longer (epochs=1000 instead of epochs=100)
and increase the number of hidden units from 5 to 10.

We’ll follow the same steps we did above but with a few changed hyperparameters.

class CircleModelV1(nn.Module):
def __init__(self):

super().__init__()
self.layer_1 = nn.Linear(in_features=2, out_features=10)
self.layer_2 = nn.Linear(in_features=10, out_features=10) # extra layer
self.layer_3 = nn.Linear(in_features=10, out_features=1)

(continues on next page)

1.37. PyTorch Neural Network Classification 351

https://www.learnpytorch.io/06_pytorch_transfer_learning/

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

def forward(self, x): # note: always make sure forward is spelt correctly!
Creating a model like this is the same as below, though below
generally benefits from speedups where possible.
z = self.layer_1(x)
z = self.layer_2(z)
z = self.layer_3(z)
return z
return self.layer_3(self.layer_2(self.layer_1(x)))

model_1 = CircleModelV1().to(device)
model_1

CircleModelV1(
(layer_1): Linear(in_features=2, out_features=10, bias=True)
(layer_2): Linear(in_features=10, out_features=10, bias=True)
(layer_3): Linear(in_features=10, out_features=1, bias=True)

)

loss_fn = nn.BCELoss() # Requires sigmoid on input
loss_fn = nn.BCEWithLogitsLoss() # Does not require sigmoid on input
optimizer = torch.optim.SGD(model_1.parameters(), lr=0.1)

This time we'll train for longer (epochs=1000 vs epochs=100) and see if it improves our␣
→˓model.

torch.manual_seed(42)

epochs = 1000 # Train for longer

Put data to target device
X_train, y_train = X_train.to(device), y_train.to(device)
X_test, y_test = X_test.to(device), y_test.to(device)

for epoch in range(epochs):
Training
1. Forward pass
y_logits = model_1(X_train).squeeze()
y_pred = torch.round(torch.sigmoid(y_logits)) # logits -> predicition probabilities -

→˓> prediction labels

2. Calculate loss/accuracy
loss = loss_fn(y_logits, y_train)
acc = accuracy_fn(y_true=y_train,

y_pred=y_pred)

3. Optimizer zero grad
optimizer.zero_grad()

4. Loss backwards
loss.backward()

(continues on next page)

352 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

5. Optimizer step
optimizer.step()

Testing
model_1.eval()
with torch.inference_mode():

1. Forward pass
test_logits = model_1(X_test).squeeze()
test_pred = torch.round(torch.sigmoid(test_logits))
2. Caculate loss/accuracy
test_loss = loss_fn(test_logits,

y_test)
test_acc = accuracy_fn(y_true=y_test,

y_pred=test_pred)

Print out what's happening every 10 epochs
if epoch % 100 == 0:

print(f"Epoch: {epoch} | Loss: {loss:.5f}, Accuracy: {acc:.2f}% | Test loss:
→˓{test_loss:.5f}, Test acc: {test_acc:.2f}%")

Epoch: 0 | Loss: 0.69396, Accuracy: 50.88% | Test loss: 0.69261, Test acc: 51.00%

Epoch: 100 | Loss: 0.69305, Accuracy: 50.38% | Test loss: 0.69379, Test acc: 48.00%

Epoch: 200 | Loss: 0.69299, Accuracy: 51.12% | Test loss: 0.69437, Test acc: 46.00%

Epoch: 300 | Loss: 0.69298, Accuracy: 51.62% | Test loss: 0.69458, Test acc: 45.00%

Epoch: 400 | Loss: 0.69298, Accuracy: 51.12% | Test loss: 0.69465, Test acc: 46.00%

Epoch: 500 | Loss: 0.69298, Accuracy: 51.00% | Test loss: 0.69467, Test acc: 46.00%

Epoch: 600 | Loss: 0.69298, Accuracy: 51.00% | Test loss: 0.69468, Test acc: 46.00%

Epoch: 700 | Loss: 0.69298, Accuracy: 51.00% | Test loss: 0.69468, Test acc: 46.00%

Epoch: 800 | Loss: 0.69298, Accuracy: 51.00% | Test loss: 0.69468, Test acc: 46.00%

Epoch: 900 | Loss: 0.69298, Accuracy: 51.00% | Test loss: 0.69468, Test acc: 46.00%

What? Our model trained for longer and with an extra layer but it still looks like it didn’t learn any patterns better than
random guessing.

Our model is still drawing a straight line between the red and blue dots.

1.37. PyTorch Neural Network Classification 353

ml_notes.akkefa.com, Release 0.0.1

The missing piece: non-linearity

We’ve seen our model can draw straight (linear) lines, thanks to its linear layers.

But how about we give it the capacity to draw non-straight (non-linear) lines?

How?

Let’s find out.

Make and plot data
import matplotlib.pyplot as plt
from sklearn.datasets import make_circles

n_samples = 1000

X, y = make_circles(n_samples=1000,
noise=0.03,
random_state=42,

)

plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.RdBu);

Convert to tensors and split into train and test sets
import torch
from sklearn.model_selection import train_test_split

Turn data into tensors
X = torch.from_numpy(X).type(torch.float)

(continues on next page)

354 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

y = torch.from_numpy(y).type(torch.float)

Split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X,

y,
test_size=0.2,
random_state=42

)

X_train[:5], y_train[:5]

(tensor([[0.6579, -0.4651],
[0.6319, -0.7347],
[-1.0086, -0.1240],
[-0.9666, -0.2256],
[-0.1666, 0.7994]]),

tensor([1., 0., 0., 0., 1.]))

1.37.9 Building a model with non-linearity

Now here comes the fun part.

What kind of pattern do you think you could draw with unlimited straight (linear) and non-straight (non-linear) lines?

I bet you could get pretty creative.

So far our neural networks have only been using linear (straight) line functions.

But the data we’ve been working with is non-linear (circles).

What do you think will happen when we introduce the capability for our model to use non-linear actviation functions?

Well let’s see.

PyTorch has a bunch of ready-made non-linear activation functions that do similiar but different things.

One of the most common and best performing is [ReLU](https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
(rectified linear-unit, torch.nn.ReLU()).

Rather than talk about it, let’s put it in our neural network between the hidden layers in the forward pass and see what
happens.

Build model with non-linear activation function
from torch import nn
class CircleModelV2(nn.Module):

def __init__(self):
super().__init__()
self.layer_1 = nn.Linear(in_features=2, out_features=10)
self.layer_2 = nn.Linear(in_features=10, out_features=10)
self.layer_3 = nn.Linear(in_features=10, out_features=1)
self.relu = nn.ReLU() # <- add in ReLU activation function
Can also put sigmoid in the model
This would mean you don't need to use it on the predictions
self.sigmoid = nn.Sigmoid()

(continues on next page)

1.37. PyTorch Neural Network Classification 355

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

def forward(self, x):
Intersperse the ReLU activation function between layers
return self.layer_3(self.relu(self.layer_2(self.relu(self.layer_1(x)))))

model_3 = CircleModelV2().to(device)
print(model_3)

CircleModelV2(
(layer_1): Linear(in_features=2, out_features=10, bias=True)
(layer_2): Linear(in_features=10, out_features=10, bias=True)
(layer_3): Linear(in_features=10, out_features=1, bias=True)
(relu): ReLU()

)

Setup loss and optimizer
loss_fn = nn.BCEWithLogitsLoss()
optimizer = torch.optim.SGD(model_3.parameters(), lr=0.1)

Fit the model
torch.manual_seed(42)
epochs = 1000

Put all data on target device
X_train, y_train = X_train.to(device), y_train.to(device)
X_test, y_test = X_test.to(device), y_test.to(device)

for epoch in range(epochs):
1. Forward pass
y_logits = model_3(X_train).squeeze()
y_pred = torch.round(torch.sigmoid(y_logits)) # logits -> prediction probabilities ->

→˓ prediction labels

2. Calculate loss and accuracy
loss = loss_fn(y_logits, y_train) # BCEWithLogitsLoss calculates loss using logits
acc = accuracy_fn(y_true=y_train,

y_pred=y_pred)

3. Optimizer zero grad
optimizer.zero_grad()

4. Loss backward
loss.backward()

5. Optimizer step
optimizer.step()

Testing
model_3.eval()
with torch.inference_mode():
1. Forward pass
test_logits = model_3(X_test).squeeze()

(continues on next page)

356 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

test_pred = torch.round(torch.sigmoid(test_logits)) # logits -> prediction␣
→˓probabilities -> prediction labels

2. Calcuate loss and accuracy
test_loss = loss_fn(test_logits, y_test)
test_acc = accuracy_fn(y_true=y_test,

y_pred=test_pred)

Print out what's happening
if epoch % 100 == 0:

print(f"Epoch: {epoch} | Loss: {loss:.5f}, Accuracy: {acc:.2f}% | Test Loss:
→˓{test_loss:.5f}, Test Accuracy: {test_acc:.2f}%")

Epoch: 0 | Loss: 0.69295, Accuracy: 50.00% | Test Loss: 0.69319, Test Accuracy: 50.00%

Epoch: 100 | Loss: 0.69115, Accuracy: 52.88% | Test Loss: 0.69102, Test Accuracy: 52.50%

Epoch: 200 | Loss: 0.68977, Accuracy: 53.37% | Test Loss: 0.68940, Test Accuracy: 55.00%

Epoch: 300 | Loss: 0.68795, Accuracy: 53.00% | Test Loss: 0.68723, Test Accuracy: 56.00%

Epoch: 400 | Loss: 0.68517, Accuracy: 52.75% | Test Loss: 0.68411, Test Accuracy: 56.50%

Epoch: 500 | Loss: 0.68102, Accuracy: 52.75% | Test Loss: 0.67941, Test Accuracy: 56.50%

Epoch: 600 | Loss: 0.67515, Accuracy: 54.50% | Test Loss: 0.67285, Test Accuracy: 56.00%

Epoch: 700 | Loss: 0.66659, Accuracy: 58.38% | Test Loss: 0.66322, Test Accuracy: 59.00%

Epoch: 800 | Loss: 0.65160, Accuracy: 64.00% | Test Loss: 0.64757, Test Accuracy: 67.50%

Epoch: 900 | Loss: 0.62362, Accuracy: 74.00% | Test Loss: 0.62145, Test Accuracy: 79.00%

Ho ho! That’s looking far better!

Evaluating a model trained with non-linear activation functions

Remember how our circle data is non-linear? Well, let’s see how our models predictions look now the model’s been
trained with non-linear activation functions.

Make predictions
model_3.eval()
with torch.inference_mode():

y_preds = torch.round(torch.sigmoid(model_3(X_test))).squeeze()
y_preds[:10], y[:10] # want preds in same format as truth labels

(tensor([1., 0., 1., 0., 0., 1., 0., 0., 1., 0.]),
tensor([1., 1., 1., 1., 0., 1., 1., 1., 1., 0.]))

1.37. PyTorch Neural Network Classification 357

ml_notes.akkefa.com, Release 0.0.1

1.37.10 Multi-class PyTorch model

We’ve covered a fair bit.

But now let’s put it all together using a multi-class classification problem.

Recall a binary classification problem deals with classifying something as one of two options (e.g. a photo as a cat
photo or a dog photo) where as a multi-class classification problem deals with classifying something from a list of more
than two options (e.g. classifying a photo as a cat a dog or a chicken).

Creating multi-class classification data

To begin a multi-class classification problem, let’s create some multi-class data.

To do so, we can leverage Scikit-Learn’s make_blobs() method.

This method will create however many classes (using the centers parameter) we want.

Specifically, let’s do the following:

Create some multi-class data with make_blobs(). Turn the data into tensors (the default of make_blobs() is to use
NumPy arrays). Split the data into training and test sets using train_test_split(). Visualize the data.

Import dependencies
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.model_selection import train_test_split

Set the hyperparameters for data creation
NUM_CLASSES = 4
NUM_FEATURES = 2
RANDOM_SEED = 42

1. Create multi-class data
X_blob, y_blob = make_blobs(n_samples=1000,

n_features=NUM_FEATURES, # X features
centers=NUM_CLASSES, # y labels
cluster_std=1.5, # give the clusters a little shake up (try changing this to 1.0,␣

→˓the default)
random_state=RANDOM_SEED

)

2. Turn data into tensors
X_blob = torch.from_numpy(X_blob).type(torch.float)
y_blob = torch.from_numpy(y_blob).type(torch.LongTensor)
print(X_blob[:5], y_blob[:5])

3. Split into train and test sets
X_blob_train, X_blob_test, y_blob_train, y_blob_test = train_test_split(X_blob,

y_blob,
test_size=0.2,
random_state=RANDOM_SEED

)

4. Plot data
(continues on next page)

358 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

plt.figure(figsize=(10, 7))
plt.scatter(X_blob[:, 0], X_blob[:, 1], c=y_blob, cmap=plt.cm.RdYlBu)

tensor([[-8.4134, 6.9352],
[-5.7665, -6.4312],
[-6.0421, -6.7661],
[3.9508, 0.6984],
[4.2505, -0.2815]]) tensor([3, 2, 2, 1, 1])

<matplotlib.collections.PathCollection at 0x7f8f12b79550>

Multi-class classification model

We’ve created a few models in PyTorch so far.

You might also be starting to get an idea of how flexible neural networks are.

How about we build one similar to model_3 but this still capable of handling multi-class data?

To do so, let’s create a subclass of nn.Module that takes in three hyperparameters:

• input_features - the number of X features coming into the model.

• output_features - the ideal numbers of output features we’d like (this will be equivalent to NUM_CLASSES or
the number of classes in your multi-class classification problem).

1.37. PyTorch Neural Network Classification 359

ml_notes.akkefa.com, Release 0.0.1

• hidden_units - the number of hidden neurons we’d like each hidden layer to use.

• Since we’re putting things together, let’s setup some device agnostic code (we don’t have to do this again in the
same notebook, it’s only a reminder).

Then we’ll create the model class using the hyperparameters above.

Build model
class BlobModel(nn.Module):

def __init__(self, input_features, output_features, hidden_units=8):
"""Initializes all required hyperparameters for a multi-class classification␣

→˓model.

Args:
input_features (int): Number of input features to the model.
out_features (int): Number of output features of the model
(how many classes there are).

hidden_units (int): Number of hidden units between layers, default 8.
"""
super().__init__()
self.linear_layer_stack = nn.Sequential(

nn.Linear(in_features=input_features, out_features=hidden_units),
nn.ReLU(), # <- does our dataset require non-linear layers? (try␣

→˓uncommenting and see if the results change)
nn.Linear(in_features=hidden_units, out_features=hidden_units),
nn.ReLU(), # <- does our dataset require non-linear layers? (try␣

→˓uncommenting and see if the results change)
nn.Linear(in_features=hidden_units, out_features=output_features), # how␣

→˓many classes are there?
)

def forward(self, x):
return self.linear_layer_stack(x)

Create an instance of BlobModel and send it to the target device
model_4 = BlobModel(input_features=NUM_FEATURES,

output_features=NUM_CLASSES,
hidden_units=8).to(device)

model_4

BlobModel(
(linear_layer_stack): Sequential(
(0): Linear(in_features=2, out_features=8, bias=True)
(1): Linear(in_features=8, out_features=8, bias=True)
(2): Linear(in_features=8, out_features=4, bias=True)

)
)

360 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

loss function and optimizer

Since we’re working on a multi-class classification problem, we’ll use the nn.CrossEntropyLoss() method as our loss
function.

And we’ll stick with using SGD with a learning rate of 0.1 for optimizing our model_4 parameters.

Create loss and optimizer
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model_4.parameters(),

lr=0.1) # exercise: try changing the learning rate here and␣
→˓seeing what happens to the model's performance

Getting prediction probabilities

Alright, we’ve got a loss function and optimizer ready, and we’re ready to train our model but before we do let’s do a
single forward pass with our model to see if it works.

Testing the input features calculation

w_ = torch.rand(3, 2)
b_ = torch.rand(3)

d = nn.Linear(in_features=2, out_features=3)(X_blob_train[:5])
formula = torch.matmul(X_blob_train[:5], w_.T) + b_
formula1 = X_blob_train[:5] @ w_.T + b_

d , w_ , b_ , formula, formula1, X_blob_train[:5], w_.T , X_blob_train[:5].shape, w_.T.
→˓shape

(tensor([[-0.6177, -2.3760, 1.3912],
[7.0950, 0.8435, 2.5291],
[0.7714, 6.1724, -5.1197],
[1.7382, 4.3139, -3.0706],
[6.2979, 1.4964, 1.5808]], grad_fn=<AddmmBackward0>),

tensor([[0.0766, 0.8460],
[0.3624, 0.3083],
[0.0850, 0.0029]]),

tensor([0.6431, 0.3908, 0.6947]),
tensor([[3.8275, 3.2374, 1.1326],

[8.5012, 2.3767, 0.4995],
[-7.6581, -5.4860, -0.0560],
[-3.5728, -3.1615, 0.1697],
[6.4933, 1.4058, 0.4320]]),

tensor([[3.8275, 3.2374, 1.1326],
[8.5012, 2.3767, 0.4995],
[-7.6581, -5.4860, -0.0560],
[-3.5728, -3.1615, 0.1697],
[6.4933, 1.4058, 0.4320]]),

tensor([[5.0405, 3.3076],
[-2.6249, 9.5260],
[-8.5240, -9.0402],
[-6.0262, -4.4375],

(continues on next page)

1.37. PyTorch Neural Network Classification 361

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

[-3.3397, 7.2175]]),
tensor([[0.0766, 0.3624, 0.0850],

[0.8460, 0.3083, 0.0029]]),
torch.Size([5, 2]),
torch.Size([2, 3]))

Perform a single forward pass on the data (we'll need to put it to the target device␣
→˓for it to work)
model_4(X_blob_train.to(device))[:5]

tensor([[-1.2711, -0.6494, -1.4740, -0.7044],
[0.2210, -1.5439, 0.0420, 1.1531],
[2.8698, 0.9143, 3.3169, 1.4027],
[1.9576, 0.3125, 2.2244, 1.1324],
[0.5458, -1.2381, 0.4441, 1.1804]], grad_fn=<SliceBackward0>)

How many elements in a single prediction sample?
model_4(X_blob_train.to(device))[0].shape, NUM_CLASSES

(torch.Size([4]), 4)

Wonderful, our model is predicting one value for each class that we have.

Do you remember what the raw outputs of our model are called?

Hint: it rhymes with “frog splits” (no animals were harmed in the creation of these materials).

If you guessed logits, you’d be correct.

So right now our model is outputing logits but what if we wanted to figure out exactly which label is was giving the
sample?

As in, how do we go from logits -> prediction probabilities -> prediction labels just like we did with the binary classi-
fication problem?

That’s where the softmax activation function comes into play.

The softmax function calculates the probability of each prediction class being the actual predicted class compared to
all other possible classes.

If this doesn’t make sense, let’s see in code.

Make prediction logits with model
y_logits = model_4(X_blob_test.to(device))

Perform softmax calculation on logits across dimension 1 to get prediction␣
→˓probabilities
y_pred_probs = torch.softmax(y_logits, dim=1)
print(y_logits[:5])
print(y_pred_probs[:5])

tensor([[-1.2549, -0.8112, -1.4795, -0.5696],
[1.7168, -1.2270, 1.7367, 2.1010],
[2.2400, 0.7714, 2.6020, 1.0107],
[-0.7993, -0.3723, -0.9138, -0.5388],

(continues on next page)

362 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

[-0.4332, -1.6117, -0.6891, 0.6852]], grad_fn=<SliceBackward0>)
tensor([[0.1872, 0.2918, 0.1495, 0.3715],

[0.2824, 0.0149, 0.2881, 0.4147],
[0.3380, 0.0778, 0.4854, 0.0989],
[0.2118, 0.3246, 0.1889, 0.2748],
[0.1945, 0.0598, 0.1506, 0.5951]], grad_fn=<SliceBackward0>)

Hmm, what’s happened here?

It may still look like the outputs of the softmax function are jumbled numbers (and they are, since our model hasn’t
been trained and is predicting using random patterns) but there’s a very specific thing different about each sample.

After passing the logits through the softmax function, each individual sample now adds to 1 (or very close to).

Let’s check.

Sum the first sample output of the softmax activation function
torch.sum(y_pred_probs[0])

tensor(1., grad_fn=<SumBackward0>)

These prediction probablities are essentially saying how much the model thinks the target X sample (the input) maps
to each class.

Since there’s one value for each class in y_pred_probs, the index of the highest value is the class the model thinks the
specific data sample most belongs to.

We can check which index has the highest value using torch.argmax().

Which class does the model think is *most* likely at the index 0 sample?
print(y_pred_probs[0])
print(torch.argmax(y_pred_probs[0]))

tensor([0.1872, 0.2918, 0.1495, 0.3715], grad_fn=<SelectBackward0>)
tensor(3)

You can see the output of torch.argmax() returns 3, so for the features (X) of the sample at index 0, the model is
predicting that the most likely class value (y) is 3.

Of course, right now this is just random guessing so it’s got a 25% chance of being right (since there’s four classes).
But we can improve those chances by training the model.

Note: To summarize the above, a model’s raw output is referred to as logits.

For a multi-class classification problem, to turn the logits into prediction probabilities, you use the softmax activation
function (torch.softmax).

The index of the value with the highest prediction probability is the class number the model thinks is most likely given
the input features for that sample (although this is a prediction, it doesn’t mean it will be correct).

1.37. PyTorch Neural Network Classification 363

ml_notes.akkefa.com, Release 0.0.1

Creating a training and testing loop

Alright, now we’ve got all of the preparation steps out of the way, let’s write a training and testing loop to improve and
evaluation our model.

We’ve done many of these steps before so much of this will be practice.

The only difference is that we’ll be adjusting the steps to turn the model outputs (logits) to prediction probabilities
(using the softmax activation function) and then to prediction labels (by taking the argmax of the output of the softmax
activation function).

Let’s train the model for epochs=100 and evaluate it every 10 epochs.

Fit the model
torch.manual_seed(42)

Set number of epochs
epochs = 100

Put data to target device
X_blob_train, y_blob_train = X_blob_train.to(device), y_blob_train.to(device)
X_blob_test, y_blob_test = X_blob_test.to(device), y_blob_test.to(device)

for epoch in range(epochs):
Training
model_4.train()

1. Forward pass
y_logits = model_4(X_blob_train) # model outputs raw logits
y_pred = torch.softmax(y_logits, dim=1).argmax(dim=1) # go from logits -> prediction␣

→˓probabilities -> prediction labels
print(y_logits)
2. Calculate loss and accuracy
loss = loss_fn(y_logits, y_blob_train)
acc = accuracy_fn(y_true=y_blob_train,

y_pred=y_pred)

3. Optimizer zero grad
optimizer.zero_grad()

4. Loss backwards
loss.backward()

5. Optimizer step
optimizer.step()

Testing
model_4.eval()
with torch.inference_mode():
1. Forward pass
test_logits = model_4(X_blob_test)
test_pred = torch.softmax(test_logits, dim=1).argmax(dim=1)
2. Calculate test loss and accuracy
test_loss = loss_fn(test_logits, y_blob_test)
test_acc = accuracy_fn(y_true=y_blob_test,

(continues on next page)

364 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

y_pred=test_pred)

Print out what's happening
if epoch % 10 == 0:

print(f"Epoch: {epoch} | Loss: {loss:.5f}, Acc: {acc:.2f}% | Test Loss: {test_
→˓loss:.5f}, Test Acc: {test_acc:.2f}%")

Epoch: 0 | Loss: 1.04324, Acc: 65.50% | Test Loss: 0.57861, Test Acc: 95.50%
Epoch: 10 | Loss: 0.14398, Acc: 99.12% | Test Loss: 0.13037, Test Acc: 99.00%
Epoch: 20 | Loss: 0.08062, Acc: 99.12% | Test Loss: 0.07216, Test Acc: 99.50%
Epoch: 30 | Loss: 0.05924, Acc: 99.12% | Test Loss: 0.05133, Test Acc: 99.50%
Epoch: 40 | Loss: 0.04892, Acc: 99.00% | Test Loss: 0.04098, Test Acc: 99.50%
Epoch: 50 | Loss: 0.04295, Acc: 99.00% | Test Loss: 0.03486, Test Acc: 99.50%
Epoch: 60 | Loss: 0.03910, Acc: 99.00% | Test Loss: 0.03083, Test Acc: 99.50%
Epoch: 70 | Loss: 0.03643, Acc: 99.00% | Test Loss: 0.02799, Test Acc: 99.50%
Epoch: 80 | Loss: 0.03448, Acc: 99.00% | Test Loss: 0.02587, Test Acc: 99.50%
Epoch: 90 | Loss: 0.03300, Acc: 99.12% | Test Loss: 0.02423, Test Acc: 99.50%

evaluating predictions

It looks like our trained model is performaning pretty well.

But to make sure of this, let’s make some predictions and visualize them.

Make predictions
model_4.eval()
with torch.inference_mode():

y_logits = model_4(X_blob_test)

View the first 10 predictions
y_logits[:10]

tensor([[4.3377, 10.3539, -14.8948, -9.7642],
[5.0142, -12.0371, 3.3860, 10.6699],
[-5.5885, -13.3448, 20.9894, 12.7711],
[1.8400, 7.5599, -8.6016, -6.9942],
[8.0727, 3.2906, -14.5998, -3.6186],
[5.5844, -14.9521, 5.0168, 13.2891],
[-5.9739, -10.1913, 18.8655, 9.9179],
[7.0755, -0.7601, -9.5531, 0.1736],
[-5.5919, -18.5990, 25.5310, 17.5799],
[7.3142, 0.7197, -11.2017, -1.2011]])

Turn predicted logits in prediction probabilities
y_pred_probs = torch.softmax(y_logits, dim=1)

Turn prediction probabilities into prediction labels
y_preds = y_pred_probs.argmax(dim=1)

Compare first 10 model preds and test labels
(continues on next page)

1.37. PyTorch Neural Network Classification 365

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

print(f"Predictions: {y_preds[:10]}\nLabels: {y_blob_test[:10]}")
print(f"Test accuracy: {accuracy_fn(y_true=y_blob_test, y_pred=y_preds)}%")

Predictions: tensor([1, 3, 2, 1, 0, 3, 2, 0, 2, 0])
Labels: tensor([1, 3, 2, 1, 0, 3, 2, 0, 2, 0])
Test accuracy: 99.5%

1.38 Recommendation Systems

There are many ways to recommend items to users. There are two primary types of recommendation systems, each
with different sub-types. The two primary types are content-based and collaborative filtering.

1.38.1 Collaborative Filtering

It primarily makes recommendations based on inputs or actions from other people.

• Ignore User and Item Attributes

• Focus on User-Item Interactions

• Pure Behavior-Based Recommendation

Variations on this type of recommendation system include:

Key Concepts

• Nearest Neighbor Collaborative Filtering

• User-User CF Algorithm

– Neighborhoods and Tuning Parameters

– Alternatives to Historic Agreement (social, trust)

• Item-Item CF Algorithm

– Dealing with Unary Data

366 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

– Hybrids and Extensions

– Practical Implications

User-User Collaborative Filtering

This strategy involves creating user groups by comparing users’ activities and providing recommendations that are
popular among other members of the group. It is useful on sites with a strong but versatile audience to quickly provide
recommendations for a user on which little information is available.

Find users similar to you and recommend what they like.

Excerise: Movie Recommendations

This is a 25 user x 100 movie matrix of ratings selected from the class data set. Rows are movies ratings, columns are
users, and cells are ratings from 1 to 5.

import pandas as pd
import torch
import seaborn
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity

df = pd.read_csv('https://github.com/akkefa/ml-notes/releases/download/v0.1.0/
→˓recommendation_systems_movies_ratings_data.csv')

df.head()

Unnamed: 0 1648 5136 918 2824 \
0 11: Star Wars: Episode IV - A New Hope (1977) NaN 4.5 5.0 4.5
1 12: Finding Nemo (2003) NaN 5.0 5.0 NaN
2 13: Forrest Gump (1994) NaN 5.0 4.5 5.0
3 14: American Beauty (1999) NaN 4.0 NaN NaN
4 22: Pirates of the Caribbean: The Curse of the... 4.0 5.0 3.0 4.5

3867 860 3712 2968 3525 ... 3556 5261 2492 5062 2486 4942 2267 \
0 4.0 4.0 NaN 5.0 4.0 ... 4.0 NaN 4.5 4.0 3.5 NaN NaN
1 4.0 4.0 4.5 4.5 4.0 ... 4.0 NaN 3.5 4.0 2.0 3.5 NaN
2 4.5 4.5 NaN 5.0 4.5 ... 4.0 5.0 3.5 4.5 4.5 4.0 3.5
3 NaN NaN 4.5 2.0 3.5 ... 4.0 NaN 3.5 4.5 3.5 4.0 NaN
4 4.0 2.5 NaN 5.0 3.0 ... 3.0 1.5 4.0 4.0 2.5 3.5 NaN

4809 3853 2288
0 NaN NaN NaN
1 NaN NaN 3.5
2 4.5 3.5 3.5
3 3.5 NaN NaN
4 5.0 NaN 3.5

[5 rows x 26 columns]

1.38. Recommendation Systems 367

ml_notes.akkefa.com, Release 0.0.1

tmp_df = df.copy()

Drop the first column (movie title)
tmp_df.drop(columns=tmp_df.columns[0], axis=1, inplace=True)

tmp_df.head()

1648 5136 918 2824 3867 860 3712 2968 3525 4323 ... 3556 5261 \
0 NaN 4.5 5.0 4.5 4.0 4.0 NaN 5.0 4.0 5.0 ... 4.0 NaN
1 NaN 5.0 5.0 NaN 4.0 4.0 4.5 4.5 4.0 5.0 ... 4.0 NaN
2 NaN 5.0 4.5 5.0 4.5 4.5 NaN 5.0 4.5 5.0 ... 4.0 5.0
3 NaN 4.0 NaN NaN NaN NaN 4.5 2.0 3.5 5.0 ... 4.0 NaN
4 4.0 5.0 3.0 4.5 4.0 2.5 NaN 5.0 3.0 4.0 ... 3.0 1.5

2492 5062 2486 4942 2267 4809 3853 2288
0 4.5 4.0 3.5 NaN NaN NaN NaN NaN
1 3.5 4.0 2.0 3.5 NaN NaN NaN 3.5
2 3.5 4.5 4.5 4.0 3.5 4.5 3.5 3.5
3 3.5 4.5 3.5 4.0 NaN 3.5 NaN NaN
4 4.0 4.0 2.5 3.5 NaN 5.0 NaN 3.5

[5 rows x 25 columns]

Given a set of items 𝐼 , and a set of users 𝑈 , and a sparse matrix of ratings 𝑅, We compute the prediction 𝑠(u, i) as
follows:

• For all users 𝑣 ̸= 𝑢, compute 𝑤𝑢𝑣

• similarity metric (e.g., Pearson correlation)

• Select a neighborhood of users 𝑉 ⊂ 𝑈 with highest 𝑤𝑢𝑣

• may limit neighborhood to top-k neighbors

• may limit neighborhood to sim > sim_threshold

• may use sim or |sim| (risks of negative correlations)

• may limit neighborhood to people who rated i (if single-use)

𝑠(𝑢, 𝑖) = 𝑟𝑢 +

∑︀
𝑣∈𝑉 (𝑟𝑣𝑖 − 𝑟𝑣) * 𝑤𝑢𝑣∑︀

𝑣∈𝑉 𝑤𝑢𝑣

Computing the person correlation coefficient between each pair of users. Pearson correlation coefficient formula:

𝑟𝑥𝑦 =

∑︀𝑛
𝑖=1(𝑥𝑖 − �̄�)(𝑦𝑖 − 𝑦)√︀∑︀𝑛

𝑖=1(𝑥𝑖 − �̄�)2
√︀∑︀𝑛

𝑖=1(𝑦𝑖 − 𝑦)2

where �̄� and 𝑦 are the means of 𝑥 and 𝑦 respectively.

corr_df = tmp_df.corr()
corr_df

1648 5136 918 2824 3867 860 3712 \
1648 1.000000 0.402980 -0.142206 0.517620 0.300200 0.480537 -0.312412
5136 0.402980 1.000000 0.118979 0.057916 0.341734 0.241377 0.131398

(continues on next page)

368 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

918 -0.142206 0.118979 1.000000 -0.317063 0.294558 0.468333 0.092037
2824 0.517620 0.057916 -0.317063 1.000000 -0.060913 -0.008066 0.462910
3867 0.300200 0.341734 0.294558 -0.060913 1.000000 0.282497 0.400275
860 0.480537 0.241377 0.468333 -0.008066 0.282497 1.000000 0.171151
3712 -0.312412 0.131398 0.092037 0.462910 0.400275 0.171151 1.000000
2968 0.383348 0.206695 -0.045854 0.214760 0.264249 0.072927 0.065015
3525 0.092775 0.360056 0.367568 0.169907 0.125193 0.387133 0.095623
4323 0.098191 0.033642 -0.035394 0.119350 -0.333602 0.146158 -0.292501
3617 -0.041734 0.138548 0.011316 0.282756 -0.066576 0.219929 -0.038900
4360 0.264425 0.152948 -0.231660 -0.005326 -0.093801 -0.005316 -0.364324
2756 0.261268 0.148882 0.148431 -0.087747 0.310104 0.323499 0.126899
89 0.464610 0.562449 0.267029 0.241567 -0.003878 0.539066 -0.051320
442 0.022308 0.414438 0.304139 0.116532 0.113581 0.181276 0.227130
3556 -0.191988 0.488607 0.373226 -0.201275 0.174085 0.347470 0.016406
5261 0.493008 0.328120 0.470972 0.228341 0.297977 0.399436 -0.240764
2492 0.360644 0.422236 0.069956 0.238700 0.476683 0.207314 -0.115254
5062 0.551089 0.226635 -0.054762 0.259660 0.293868 0.311363 0.247693
2486 0.002544 0.305803 0.133812 0.247097 0.438992 0.276306 0.166913
4942 0.116653 0.037769 0.015169 0.149247 -0.162818 0.079698 0.146011
2267 -0.429183 0.240728 -0.273096 -0.361466 -0.295966 0.212991 0.009685
4809 0.394371 0.411676 0.082528 0.474974 0.054518 0.165608 -0.451625
3853 -0.304422 0.189234 0.667168 -0.262073 0.464110 0.162314 0.193660
2288 0.245048 0.390067 0.119162 0.166999 0.379856 0.279677 0.113266

2968 3525 4323 ... 3556 5261 2492 \
1648 0.383348 0.092775 0.098191 ... -0.191988 0.493008 0.360644
5136 0.206695 0.360056 0.033642 ... 0.488607 0.328120 0.422236
918 -0.045854 0.367568 -0.035394 ... 0.373226 0.470972 0.069956
2824 0.214760 0.169907 0.119350 ... -0.201275 0.228341 0.238700
3867 0.264249 0.125193 -0.333602 ... 0.174085 0.297977 0.476683
860 0.072927 0.387133 0.146158 ... 0.347470 0.399436 0.207314
3712 0.065015 0.095623 -0.292501 ... 0.016406 -0.240764 -0.115254
2968 1.000000 0.028529 -0.073252 ... 0.049132 -0.009041 0.203613
3525 0.028529 1.000000 0.210879 ... 0.475711 0.306957 0.136343
4323 -0.073252 0.210879 1.000000 ... -0.040606 0.155045 -0.204164
3617 0.312573 0.243283 0.022907 ... 0.079571 -0.165628 0.053306
4360 0.053024 -0.086061 0.252529 ... 0.072993 0.161882 -0.000311
2756 0.143347 0.058365 -0.221789 ... 0.101784 -0.140953 0.150476
89 -0.118085 0.475495 0.258866 ... 0.326774 0.291476 0.372676
442 0.100841 0.201734 -0.024337 ... 0.251660 0.046822 0.218575
3556 0.049132 0.475711 -0.040606 ... 1.000000 0.086665 0.158739
5261 -0.009041 0.306957 0.155045 ... 0.086665 1.000000 0.149165
2492 0.203613 0.136343 -0.204164 ... 0.158739 0.149165 1.000000
5062 0.033301 0.301750 0.263654 ... -0.016164 0.372177 0.276883
2486 0.137982 0.143414 0.167198 ... 0.256537 0.198086 0.158002
4942 0.070602 0.056100 -0.084592 ... -0.055137 0.270928 0.035825
2267 0.109452 0.179908 0.315712 ... 0.503247 -0.393376 -0.345495
4809 -0.083562 0.284648 0.085673 ... 0.100277 0.455274 0.449025
3853 -0.089317 0.170757 -0.109892 ... 0.423225 0.039050 0.289410
2288 0.229219 0.193131 -0.279385 ... 0.222458 0.374264 0.169239

5062 2486 4942 2267 4809 3853 2288

(continues on next page)

1.38. Recommendation Systems 369

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

1648 0.551089 0.002544 0.116653 -0.429183 0.394371 -0.304422 0.245048
5136 0.226635 0.305803 0.037769 0.240728 0.411676 0.189234 0.390067
918 -0.054762 0.133812 0.015169 -0.273096 0.082528 0.667168 0.119162
2824 0.259660 0.247097 0.149247 -0.361466 0.474974 -0.262073 0.166999
3867 0.293868 0.438992 -0.162818 -0.295966 0.054518 0.464110 0.379856
860 0.311363 0.276306 0.079698 0.212991 0.165608 0.162314 0.279677
3712 0.247693 0.166913 0.146011 0.009685 -0.451625 0.193660 0.113266
2968 0.033301 0.137982 0.070602 0.109452 -0.083562 -0.089317 0.229219
3525 0.301750 0.143414 0.056100 0.179908 0.284648 0.170757 0.193131
4323 0.263654 0.167198 -0.084592 0.315712 0.085673 -0.109892 -0.279385
3617 0.007810 -0.244637 -0.030709 -0.070660 0.268595 -0.143503 0.013284
4360 -0.077598 0.039389 -0.156091 0.408592 0.179652 0.280402 0.040328
2756 0.024572 -0.031130 -0.133768 0.142067 0.015140 0.181210 -0.005935
89 0.525990 0.123380 0.178088 0.088600 0.668516 0.179680 0.155869
442 0.150431 0.280392 0.038378 0.262520 0.064179 -0.023439 0.257864
3556 -0.016164 0.256537 -0.055137 0.503247 0.100277 0.423225 0.222458
5261 0.372177 0.198086 0.270928 -0.393376 0.455274 0.039050 0.374264
2492 0.276883 0.158002 0.035825 -0.345495 0.449025 0.289410 0.169239
5062 1.000000 0.403809 0.028521 0.107821 0.428055 0.407044 0.278868
2486 0.403809 1.000000 -0.068421 0.173797 0.105761 0.472361 0.257462
4942 0.028521 -0.068421 1.000000 -0.346386 -0.004638 0.143672 0.074476
2267 0.107821 0.173797 -0.346386 1.000000 -0.339845 0.165960 0.156341
4809 0.428055 0.105761 -0.004638 -0.339845 1.000000 0.542192 0.435520
3853 0.407044 0.472361 0.143672 0.165960 0.542192 1.000000 0.080403
2288 0.278868 0.257462 0.074476 0.156341 0.435520 0.080403 1.000000

[25 rows x 25 columns]

seaborn.heatmap(corr_df.corr())

<Axes: >

370 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

corr_df["3867"].sort_values(ascending=False)

3867 1.000000
2492 0.476683
3853 0.464110
2486 0.438992
3712 0.400275
2288 0.379856
5136 0.341734
2756 0.310104
1648 0.300200
5261 0.297977
918 0.294558
5062 0.293868
860 0.282497
2968 0.264249
3556 0.174085
3525 0.125193
442 0.113581
4809 0.054518
89 -0.003878
2824 -0.060913
3617 -0.066576
4360 -0.093801
4942 -0.162818

(continues on next page)

1.38. Recommendation Systems 371

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

2267 -0.295966
4323 -0.333602
Name: 3867, dtype: float64

corr_df["89"].sort_values(ascending=False)

89 1.000000
4809 0.668516
5136 0.562449
860 0.539066
5062 0.525990
3525 0.475495
1648 0.464610
2492 0.372676
3556 0.326774
442 0.296826
5261 0.291476
2756 0.290591
3617 0.278335
918 0.267029
4323 0.258866
2824 0.241567
3853 0.179680
4942 0.178088
2288 0.155869
2486 0.123380
2267 0.088600
3867 -0.003878
3712 -0.051320
4360 -0.115492
2968 -0.118085
Name: 89, dtype: float64

Compute the predictions for each movie for users 3867 and 89 by taking the correlation-weighted average of the ratings
of the top-five neighbors (for each target user) for each movie. The formal formula for correlation-weighted average is

�̂�𝑢,𝑖 =

∑︀
𝑣∈𝑁 𝑟𝑢,𝑣𝑥𝑣,𝑖∑︀
𝑣∈𝑁 |𝑟𝑢,𝑣|

where 𝑁 is the set of the top-five neighbors of user 𝑢 and 𝑥𝑣,𝑖 is the rating of user 𝑣 for movie 𝑖.

def get_top_users(df_corr,target,n=5):
target_cor = df_corr.loc[target]
top_neighbors = target_cor.nlargest(n+1).iloc[1:]
return top_neighbors

def get_user_movie_score(movie,user):
neighbors = get_top_users(corr_df,str(user))
rating_sum = 0
weight_sum = 0
for user,w in zip(neighbors.index,neighbors.values):

if np.isnan(movie[user]):
(continues on next page)

372 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

continue
rating_sum += movie[user] * w
weight_sum += w

if weight_sum == 0:
return 0

else:
return rating_sum/weight_sum

get_top_users(corr_df,"3867")

2492 0.476683
3853 0.464110
2486 0.438992
3712 0.400275
2288 0.379856
Name: 3867, dtype: float64

get_top_users(corr_df,"3712")

2824 0.462910
3867 0.400275
5062 0.247693
442 0.227130
3853 0.193660
Name: 3712, dtype: float64

pred_3867 = df.apply(get_user_movie_score,axis=1,args=(3867,))
pred_89 = df.apply(get_user_movie_score,axis=1,args=(89,))

pred_3867.sort_values(ascending=False)[:3]

77 4.760291
21 4.551454
16 4.507637
dtype: float64

for i in pred_3867.sort_values(ascending=False)[:5].index:
print(df.loc[i][0])

1891: Star Wars: Episode V - The Empire Strikes Back (1980)
155: The Dark Knight (2008)
122: The Lord of the Rings: The Return of the King (2003)
77: Memento (2000)
121: The Lord of the Rings: The Two Towers (2002)

/tmp/ipykernel_1051/879984262.py:2: FutureWarning: Series.__getitem__ treating keys as␣
→˓positions is deprecated. In a future version, integer keys will always be treated as␣
→˓labels (consistent with DataFrame behavior). To access a value by position, use `ser.
→˓iloc[pos]`
print(df.loc[i][0])

1.38. Recommendation Systems 373

ml_notes.akkefa.com, Release 0.0.1

for i in pred_89.sort_values(ascending=False)[:5].index:
print(df.loc[i][0])

238: The Godfather (1972)
278: The Shawshank Redemption (1994)
807: Seven (a.k.a. Se7en) (1995)
275: Fargo (1996)
424: Schindler's List (1993)

/tmp/ipykernel_1051/3855090423.py:2: FutureWarning: Series.__getitem__ treating keys as␣
→˓positions is deprecated. In a future version, integer keys will always be treated as␣
→˓labels (consistent with DataFrame behavior). To access a value by position, use `ser.
→˓iloc[pos]`
print(df.loc[i][0])

Normalization

def get_norm_user_movie_score(movie,user):
user = str(user)
neighbors = get_top_users(corr_df,str(user))
rating_sum = 0
weight_sum = 0
user_rating_mean = df.loc[:,user].mean()
for user,w in zip(neighbors.index,neighbors.values):

if np.isnan(movie[user]):
continue

movie_user_mean = df.loc[:,user].mean()
rating_sum += (movie[user]-movie_user_mean) * w
weight_sum += w

if weight_sum == 0:
return 0

else:
return user_rating_mean + rating_sum/weight_sum

norm_pred_3867 = df.apply(get_norm_user_movie_score,axis=1,args=(3867,))
norm_pred_89 = df.apply(get_norm_user_movie_score,axis=1,args=(89,))

for i in norm_pred_3867.sort_values(ascending=False)[:5].index:
print(df.loc[i][0])

1891: Star Wars: Episode V - The Empire Strikes Back (1980)
155: The Dark Knight (2008)
77: Memento (2000)
275: Fargo (1996)
807: Seven (a.k.a. Se7en) (1995)

/tmp/ipykernel_1051/3753397190.py:2: FutureWarning: Series.__getitem__ treating keys as␣
→˓positions is deprecated. In a future version, integer keys will always be treated as␣

(continues on next page)

374 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

→˓labels (consistent with DataFrame behavior). To access a value by position, use `ser.
→˓iloc[pos]`
print(df.loc[i][0])

Problem in User - User Collaborative Filtering:

Issues of Sparsity – With large item sets, small numbers of ratings, too often there are points where no recommendation
can be made (for a user, for an item to a set of users, etc.) – Many solutions proposed here, including “filterbots”, item-
item, and dimensionality reduction

Computational performance – With millions of users (or more), computing all- pairs correlations is expensive – Even
incremental approaches were expensive – And user profiles could change quickly – needed to compute in real time to
keep users happy

Item-Item Collaborative Filtering

Item-Item similarity is fairly stable.

• This is dependent on having many more usersthan items

– Average item has many more ratings than an average user

– Intuitively, items don’t generally change rapidly – at least not in ratings space (special case for time-bound
items)

• Item similarity is a route to computing a prediction of a user’s item preference

https://github.com/shenweichen/Coursera/blob/master/Specialization_Recommender_System_University_of_Minnesota/Course2_Nearest_Neighbor_Collaborative_Filtering/Item%20Based%20Assignment.ipynb

data = pd.read_excel("https://github.com/akkefa/ml-notes/releases/download/v0.1.0/item_
→˓item_cb.xls", sheet_name=0)

data = data.fillna(0)

data.head()

User 1: Toy Story (1995) \
0 755 2.0
1 5277 1.0
2 1577 0.0
3 4388 2.0
4 1202 0.0

1210: Star Wars: Episode VI - Return of the Jedi (1983) \
0 5.0
1 0.0
2 0.0
3 3.0
4 3.0

356: Forrest Gump (1994) 318: Shawshank Redemption, The (1994) \
0 2.0 0.0
1 0.0 2.0
2 0.0 5.0

(continues on next page)

1.38. Recommendation Systems 375

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

3 0.0 0.0
4 4.0 1.0

593: Silence of the Lambs, The (1991) 3578: Gladiator (2000) \
0 4.0 4.0
1 4.0 2.0
2 2.0 0.0
3 0.0 1.0
4 4.0 1.0

260: Star Wars: Episode IV - A New Hope (1977) \
0 1.0
1 5.0
2 0.0
3 0.0
4 4.0

2028: Saving Private Ryan (1998) 296: Pulp Fiction (1994) ... \
0 2.0 0.0 ...
1 0.0 0.0 ...
2 0.0 0.0 ...
3 3.0 4.0 ...
4 4.0 0.0 ...

2916: Total Recall (1990) 780: Independence Day (ID4) (1996) \
0 0.0 5.0
1 2.0 2.0
2 1.0 4.0
3 4.0 0.0
4 1.0 0.0

541: Blade Runner (1982) 1265: Groundhog Day (1993) \
0 2.0 5.0
1 0.0 2.0
2 4.0 1.0
3 3.0 5.0
4 4.0 0.0

2571: Matrix, The (1999) 527: Schindler's List (1993) \
0 4.0 2.0
1 0.0 5.0
2 1.0 2.0
3 0.0 5.0
4 3.0 5.0

2762: Sixth Sense, The (1999) 1198: Raiders of the Lost Ark (1981) \
0 5.0 0.0
1 1.0 3.0
2 3.0 1.0
3 1.0 1.0
4 5.0 0.0

(continues on next page)

376 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

34: Babe (1995) Mean
0 0.0 3.200000
1 0.0 2.769231
2 3.0 2.333333
3 2.0 2.833333
4 0.0 3.214286

[5 rows x 22 columns]

matrix = pd.read_excel('https://github.com/akkefa/ml-notes/releases/download/v0.1.0/item_
→˓item_cb.xls',sheet_name=2)

matrix.head()

Unnamed: 0 1: Toy Story (1995) \
0 1: Toy Story (1995) NaN
1 1210: Star Wars: Episode VI - Return of the Je... NaN
2 356: Forrest Gump (1994) NaN
3 318: Shawshank Redemption, The (1994) NaN
4 593: Silence of the Lambs, The (1991) NaN

1210: Star Wars: Episode VI - Return of the Jedi (1983) \
0 NaN
1 NaN
2 NaN
3 NaN
4 NaN

356: Forrest Gump (1994) 318: Shawshank Redemption, The (1994) \
0 NaN NaN
1 NaN NaN
2 NaN NaN
3 NaN NaN
4 NaN NaN

593: Silence of the Lambs, The (1991) 3578: Gladiator (2000) \
0 NaN NaN
1 NaN NaN
2 NaN NaN
3 NaN NaN
4 NaN NaN

260: Star Wars: Episode IV - A New Hope (1977) \
0 NaN
1 NaN
2 NaN
3 NaN
4 NaN

2028: Saving Private Ryan (1998) 296: Pulp Fiction (1994) ... \
0 NaN NaN ...

(continues on next page)

1.38. Recommendation Systems 377

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

1 NaN NaN ...
2 NaN NaN ...
3 NaN NaN ...
4 NaN NaN ...

2396: Shakespeare in Love (1998) 2916: Total Recall (1990) \
0 NaN NaN
1 NaN NaN
2 NaN NaN
3 NaN NaN
4 NaN NaN

780: Independence Day (ID4) (1996) 541: Blade Runner (1982) \
0 NaN NaN
1 NaN NaN
2 NaN NaN
3 NaN NaN
4 NaN NaN

1265: Groundhog Day (1993) 2571: Matrix, The (1999) \
0 NaN NaN
1 NaN NaN
2 NaN NaN
3 NaN NaN
4 NaN NaN

527: Schindler's List (1993) 2762: Sixth Sense, The (1999) \
0 NaN NaN
1 NaN NaN
2 NaN NaN
3 NaN NaN
4 NaN NaN

1198: Raiders of the Lost Ark (1981) 34: Babe (1995)
0 NaN NaN
1 NaN NaN
2 NaN NaN
3 NaN NaN
4 NaN NaN

[5 rows x 21 columns]

matrix = pd.DataFrame(cosine_similarity(data.values[:-1,1:-1].T),index=matrix.index,
→˓columns=matrix.columns[1:])

matrix = matrix.applymap(lambda x:max(0,x))

/tmp/ipykernel_1051/1610576545.py:1: FutureWarning: DataFrame.applymap has been␣
→˓deprecated. Use DataFrame.map instead.
matrix = matrix.applymap(lambda x:max(0,x))

378 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

matrix.columns

Index(['1: Toy Story (1995)',
'1210: Star Wars: Episode VI - Return of the Jedi (1983)',
'356: Forrest Gump (1994)', '318: Shawshank Redemption, The (1994)',
'593: Silence of the Lambs, The (1991)', '3578: Gladiator (2000)',
'260: Star Wars: Episode IV - A New Hope (1977)',
'2028: Saving Private Ryan (1998)', '296: Pulp Fiction (1994)',
'1259: Stand by Me (1986)', '2396: Shakespeare in Love (1998)',
'2916: Total Recall (1990)', '780: Independence Day (ID4) (1996)',
'541: Blade Runner (1982)', '1265: Groundhog Day (1993)',
'2571: Matrix, The (1999)', '527: Schindler's List (1993)',
'2762: Sixth Sense, The (1999)', '1198: Raiders of the Lost Ark (1981)',
'34: Babe (1995)'],

dtype='object')

matrix.iloc[0].nlargest(6).iloc[1:]

260: Star Wars: Episode IV - A New Hope (1977) 0.747409
780: Independence Day (ID4) (1996) 0.690665
296: Pulp Fiction (1994) 0.667846
318: Shawshank Redemption, The (1994) 0.667424
1265: Groundhog Day (1993) 0.661016
Name: 0, dtype: float64

def get_score(row,user):
user_rating = data.loc[(data.User==user)]
user_hist_item = user_rating.columns[pd.notnull(user_rating).values[0]]
movie_name = row.name

neighbor_names = user_hist_item.tolist()#row.index.tolist()

if 'User' in neighbor_names:
neighbor_names.remove('User')

if 'Mean' in neighbor_names:
neighbor_names.remove('Mean')

a = row.loc[neighbor_names].values
b = data.loc[data.User==user,neighbor_names]

return np.dot(a,b.values[0])/np.sum(a)

user_rating = data.loc[data.User==5277]

idx = user_rating.columns[pd.notnull(user_rating).values[0]].tolist()
idx.remove('User')
idx.remove('Mean')

idx

['1: Toy Story (1995)',
'1210: Star Wars: Episode VI - Return of the Jedi (1983)',

(continues on next page)

1.38. Recommendation Systems 379

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

'356: Forrest Gump (1994)',
'318: Shawshank Redemption, The (1994)',
'593: Silence of the Lambs, The (1991)',
'3578: Gladiator (2000)',
'260: Star Wars: Episode IV - A New Hope (1977)',
'2028: Saving Private Ryan (1998)',
'296: Pulp Fiction (1994)',
'1259: Stand by Me (1986)',
'2396: Shakespeare in Love (1998)',
'2916: Total Recall (1990)',
'780: Independence Day (ID4) (1996)',
'541: Blade Runner (1982)',
'1265: Groundhog Day (1993)',
'2571: Matrix, The (1999)',
"527: Schindler's List (1993)",
'2762: Sixth Sense, The (1999)',
'1198: Raiders of the Lost Ark (1981)',
'34: Babe (1995)']

ans = matrix.apply(get_score,axis=1,args=(5277,))

1.38.2 Content-Based

1.39 Matrix Factorization

Matrix factorization is a class of collaborative filtering algorithms used in recommender systems. Matrix factorization
algorithms work by decomposing the user-item interaction matrix into the product of two lower dimensionality rect-
angular matrices. The rows of the first matrix represent the latent user factors and the columns of the second matrix
represent the latent item factors. The dot product of these two matrices approximates the original user-item interac-
tion matrix. The latent factors are also known as embeddings and are typically of much lower dimensionality than
the original user and item vectors. The latent factors are learned through an iterative process that minimizes the error
between the dot product of the latent factors and the original user-item interaction matrix. The error is measured using
a loss function such as mean squared error (MSE) or binary cross entropy (BCE). The loss function is minimized using
gradient descent or one of its variants.

1.39.1 Singular Value Decomposition (SVD)

So the singular value decomposition comes from linear algebra, and it’s a way of breaking down a matrix into constituent
parts. we can factorize it into three matrices. And this is called factorization because it works a lot like factoring
numbers. You take 15, and you can factorize it into 3 and 5, such that you multiply 3 and 5 together, and you get 15.

𝑅 = 𝑃Σ𝑄T

• 𝑅 is 𝑚× 𝑛 ratings matrix

• 𝑃 is 𝑚× 𝑘 user-feature affinity matrix

• 𝑄 is 𝑛× 𝑘 item-feature relevance matrix

• Σ is 𝑘 × 𝑘 diagonal feature weight matrix

• For linear algebra people: 𝑃 and 𝑄 are orthogonal

380 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

• Linear algebra guarantees this exists for any real 𝑅

latent features

Latent means not directly observable. The common use of the term in PCA and Factor Analysis is to reduce dimension
of a large number of directly observable features into a smaller set of indirectly observable features.

• SVD describes preference in terms of latent features

• These features are learned from the rating data

• Not necessarily interpretable

– Optimized for predictive power

• Defines a shared vector space for users and items (feature space)

– Enables compact representation of each

Example using Superise library

import pandas as pd
from surprise import Reader
from surprise import Dataset
from surprise.model_selection import cross_validate
from surprise import NormalPredictor
from surprise import KNNBasic
from surprise import KNNWithMeans
from surprise import KNNWithZScore
from surprise import KNNBaseline
from surprise import SVD
from surprise import BaselineOnly
from surprise import SVDpp
from surprise import NMF
from surprise import SlopeOne
from surprise import CoClustering
from surprise.accuracy import rmse
from surprise import accuracy
from surprise.model_selection import train_test_split
from surprise.model_selection import GridSearchCV

Importing data

GroupLens Research has collected and made available rating data sets from the MovieLens web site
(http://movielens.org). The data sets were collected over various periods of time, depending on the size of the set.

We are using Small: 100,000 ratings and 3,600 tag applications applied to 9,000 movies by 600 users. Last updated
9/2018.

Download: ml-latest-small.zip (size: 1 MB)

df = pd.read_csv ("https://raw.githubusercontent.com/singhsidhukuldeep/Recommendation-
→˓System/master/data/ratings.csv")

1.39. Matrix Factorization 381

ml_notes.akkefa.com, Release 0.0.1

df.head()

userId movieId rating timestamp
0 1 1 4.0 964982703
1 1 3 4.0 964981247
2 1 6 4.0 964982224
3 1 47 5.0 964983815
4 1 50 5.0 964982931

df.tail()

userId movieId rating timestamp
100831 610 166534 4.0 1493848402
100832 610 168248 5.0 1493850091
100833 610 168250 5.0 1494273047
100834 610 168252 5.0 1493846352
100835 610 170875 3.0 1493846415

df.drop(['timestamp'], axis=1, inplace=True)
df.columns = ['userID', 'item', 'rating']

df.head()

userID item rating
0 1 1 4.0
1 1 3 4.0
2 1 6 4.0
3 1 47 5.0
4 1 50 5.0

df.shape

(100836, 3)

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100836 entries, 0 to 100835
Data columns (total 3 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 userID 100836 non-null int64
1 item 100836 non-null int64
2 rating 100836 non-null float64
dtypes: float64(1), int64(2)
memory usage: 2.3 MB

print('Dataset shape: {}'.format(df.shape))
print('-Dataset examples-')
print(df.iloc[::20000, :])

382 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

Dataset shape: (100836, 3)
-Dataset examples-

userID item rating
0 1 1 4.0
20000 132 1079 3.5
40000 274 5621 2.0
60000 387 6748 3.0
80000 501 11 3.0
100000 610 6978 4.0

To reduce the dimensionality of the dataset, we will filter out rarely rated movies␣
→˓and rarely rating users.

min_ratings = 5
filter_items = df['item'].value_counts() > min_ratings
filter_items = filter_items[filter_items].index.tolist()

min_user_ratings = 5
filter_users = df['userID'].value_counts() > min_user_ratings
filter_users = filter_users[filter_users].index.tolist()

df_new = df[(df['item'].isin(filter_items)) & (df['userID'].isin(filter_users))]
print('The original data frame shape:\t{}'.format(df.shape))
print('The new data frame shape:\t{}'.format(df_new.shape))

The original data frame shape: (100836, 3)
The new data frame shape: (88364, 3)

Surprise library

To load a dataset from a pandas dataframe, we will use the load_from_df() method, we will also need a Reader object,
and the rating_scale parameter must be specified. The dataframe must have three columns, corresponding to the user
ids, the item ids, and the ratings in this order. Each row thus corresponds to a given rating.

reader = Reader(rating_scale=(1, 5))
data = Dataset.load_from_df(df_new[['userID', 'item', 'rating']], reader)

1.39. Matrix Factorization 383

ml_notes.akkefa.com, Release 0.0.1

Basic algorithms

With the Surprise library, we will benchmark the following algorithms

NormalPredictor

• NormalPredictor algorithm predicts a random rating based on the distribution of the training set, which is as-
sumed to be normal. This is one of the most basic algorithms that do not do much work.

BaselineOnly

• BasiclineOnly algorithm predicts the baseline estimate for given user and item.

k-NN algorithms

KNNBasic

• KNNBasic is a basic collaborative filtering algorithm.

KNNWithMeans

• KNNWithMeans is basic collaborative filtering algorithm, taking into account the mean ratings of each user.

KNNWithZScore

• KNNWithZScore is a basic collaborative filtering algorithm, taking into account the z-score normalization of
each user.

KNNBaseline

• KNNBaseline is a basic collaborative filtering algorithm taking into account a baseline rating.

Matrix Factorization-based algorithms

SVD

• SVD algorithm is equivalent to Probabilistic Matrix Factorization (http://papers.nips.cc/paper/3208-
probabilistic-matrix-factorization.pdf)

384 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

SVDpp

• The SVDpp algorithm is an extension of SVD that takes into account implicit ratings.

NMF

• NMF is a collaborative filtering algorithm based on Non-negative Matrix Factorization. It is very similar with
SVD.

Slope One

• Slope One is a straightforward implementation of the SlopeOne algorithm. (https://arxiv.org/abs/cs/0702144)

Co-clustering

• Co-clustering is a collaborative filtering algorithm based on co-clustering
(http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.113.6458&rep=rep1&type=pdf)

We use rmse as our accuracy metric for the predictions.

benchmark = []
Iterate over all algorithms

algorithms = [SVD(), SVDpp(), SlopeOne(), NMF(), NormalPredictor(), KNNBaseline(),␣
→˓KNNBasic(), KNNWithMeans(), KNNWithZScore(), BaselineOnly(), CoClustering()]
algorithms = [SVD(), KNNWithMeans(), CoClustering()]
print ("Attempting: ", str(algorithms), '\n\n\n')

for algorithm in algorithms:
print("Starting: " ,str(algorithm))
print("Starting: ",str(algorithm).split(' ')[0].split('.')[-1])
Perform cross validation
results = cross_validate(algorithm, data, measures=['RMSE'], cv=3, verbose=True)
results = cross_validate(algorithm, data, measures=['RMSE','MAE'], cv=3,␣

→˓verbose=False)
Get results & append algorithm name
tmp = pd.DataFrame.from_dict(results).mean(axis=0)
tmp = tmp._append(pd.Series([str(algorithm).split(' ')[0].split('.')[-1]], index=[

→˓'Algorithm']))
benchmark.append(tmp)
print("Done: " ,str(algorithm), "\n\n")

print ('\n\tDONE\n')

Starting: SVD

Evaluating RMSE of algorithm SVD on 3 split(s).

Fold 1 Fold 2 Fold 3 Mean Std
RMSE (testset) 0.8609 0.8658 0.8669 0.8645 0.0026

(continues on next page)

1.39. Matrix Factorization 385

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

Fit time 0.67 0.67 0.65 0.66 0.01
Test time 0.23 0.19 0.19 0.20 0.02
Done: <surprise.prediction_algorithms.matrix_factorization.SVD object at 0x7f71ec816b50>

Starting: KNNWithMeans
Computing the msd similarity matrix...
Done computing similarity matrix.

Computing the msd similarity matrix...
Done computing similarity matrix.

Computing the msd similarity matrix...
Done computing similarity matrix.

Evaluating RMSE of algorithm KNNWithMeans on 3 split(s).

Fold 1 Fold 2 Fold 3 Mean Std
RMSE (testset) 0.8720 0.8617 0.8705 0.8681 0.0045
Fit time 0.07 0.08 0.08 0.08 0.00
Test time 1.47 1.48 1.46 1.47 0.01
Done: <surprise.prediction_algorithms.knns.KNNWithMeans object at 0x7f71ecb97510>

Starting: CoClustering

Evaluating RMSE of algorithm CoClustering on 3 split(s).

Fold 1 Fold 2 Fold 3 Mean Std
RMSE (testset) 0.9130 0.9296 0.9208 0.9211 0.0068
Fit time 1.01 1.08 1.00 1.03 0.03
Test time 0.12 0.12 0.12 0.12 0.00
Done: <surprise.prediction_algorithms.co_clustering.CoClustering object at␣
→˓0x7f71fb27ae10>

DONE

surprise_results = pd.DataFrame(benchmark).set_index('Algorithm').sort_values('test_rmse
→˓')

surprise_results

test_rmse fit_time test_time
Algorithm
SVD 0.864549 0.662298 0.200422
KNNWithMeans 0.868051 0.078171 1.472121
CoClustering 0.921145 1.030056 0.122058

SVDpp is performing best but it is taking a lot of time so we will use SED instean but apply GridSearch CV.

386 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

param_grid = {
"n_epochs": [5, 10, 15, 20, 30, 40, 50, 100],
"lr_all": [0.001, 0.002, 0.005],
"reg_all": [0.02, 0.08, 0.4, 0.6]
}

smaller grid for testing
param_grid = {

"n_epochs": [10, 20],
"lr_all": [0.002, 0.005],
"reg_all": [0.02]

}
gs = GridSearchCV(SVD, param_grid, measures=["rmse", "mae"], refit=True, cv=5)

gs.fit(data)

training_parameters = gs.best_params["rmse"]

print("BEST RMSE: \t", gs.best_score["rmse"])
print("BEST MAE: \t", gs.best_score["mae"])
print("BEST params: \t", gs.best_params["rmse"])

BEST RMSE: 0.855152868083611
BEST MAE: 0.6564623587669164
BEST params: {'n_epochs': 20, 'lr_all': 0.005, 'reg_all': 0.02}

from datetime import datetime
print(training_parameters)
reader = Reader(rating_scale=(1, 5))

print("\n\n\t\t STARTING\n\n")
start = datetime.now()

print("> Loading data...")
data = Dataset.load_from_df(df_new[['userID', 'item', 'rating']], reader)
print("> OK")

print("> Creating trainset...")
trainset = data.build_full_trainset()
print("> OK")

startTraining = datetime.now()
print("> Training...")

algo = SVD(n_epochs = training_parameters['n_epochs'], lr_all = training_parameters['lr_
→˓all'], reg_all = training_parameters['reg_all'])

algo.fit(trainset)

endTraining = datetime.now()
print("> OK \t\t It Took: ", (endTraining-startTraining).seconds, "seconds")

(continues on next page)

1.39. Matrix Factorization 387

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

end = datetime.now()
print (">> DONE \t\t It Took", (end-start).seconds, "seconds")

{'n_epochs': 20, 'lr_all': 0.005, 'reg_all': 0.02}

STARTING

> Loading data...
> OK
> Creating trainset...
> OK
> Training...

> OK It Took: 0 seconds
>> DONE It Took 0 seconds

SAVING TRAINED MODEL
from surprise import dump
import os
model_filename = "./model.pickle"
print (">> Starting dump")
Dump algorithm and reload it.
file_name = os.path.expanduser(model_filename)
dump.dump(file_name, algo=algo)
print (">> Dump done")
print(model_filename)

LOAD SAVED MODEL
def load_model(model_filename):
print (">> Loading dump")
from surprise import dump
import os
file_name = os.path.expanduser(model_filename)
_, loaded_model = dump.load(file_name)
print (">> Loaded dump")
return loaded_model

from pprint import pprint as pp
model_filename = "./model.pickle"
def itemRating(user, item):

uid = str(user)
iid = str(item)
loaded_model = load_model(model_filename)
prediction = algo.predict(user, item, verbose=True)
rating = prediction.est
details = prediction.details
uid = prediction.uid
iid = prediction.iid

(continues on next page)

388 Chapter 1. Contents

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

true = prediction.r_ui
ret = {

'user': user,
'item': item,
'rating': rating,
'details': details,
'uid': uid,
'iid': iid,
'true': true
}

pp (ret)
print ('\n\n')
return ret

print(itemRating(user = "610", item = "10"))

user: 610 item: 10 r_ui = None est = 3.54 {'was_impossible': False}
{'details': {'was_impossible': False},
'iid': '10',
'item': '10',
'rating': 3.543813091304151,
'true': None,
'uid': '610',
'user': '610'}

{'user': '610', 'item': '10', 'rating': 3.543813091304151, 'details': {'was_impossible':␣
→˓False}, 'uid': '610', 'iid': '10', 'true': None}

1.40 Probability solutions

1.41 R Solutions

#. Imagine rolling a fair, six-sided die, and then flipping a fair, two-sided coin the number of times specified with the
die (i.e., if we roll a 3, flip the coin 3 times). Let X be the number of heads you get in this experiment. Use a simulation
in R to estimate the mean, median and mode of X.

#replicate
set.seed(110)
sims = 1000

#keep track of X
X = rep(0, sims)

#run the loop
for(i in 1:sims){

#generate a roll
(continues on next page)

1.40. Probability solutions 389

ml_notes.akkefa.com, Release 0.0.1

(continued from previous page)

roll = sample(1:6, 1)

#flip the coin the specified number of times
for(j in 1:roll){

#flip the coin
#recall that 'runif(1)' draws a random value between 0 and 1, so
count 'heads' as getting a value below 1/2
flip = runif(1)

#see if we got heads; increment if we did
if(flip <= 1/2){
X[i] = X[i] + 1

}
}

}

#find the mean and median
mean(X); median(X)

The default highlighting language is Python: it can be be changed using the highlight directive within a document:

.. highlight:: html

The literal blocks are now highlighted as HTML, until a new directive is found.

::
<html><head></head>
<body>This is a text.</body>
</html>

The following directive changes the hightlight language to SQL.

.. highlight:: sql

::
SELECT * FROM mytable

.. highlight:: none

From here on no highlighting will be done.

::
SELECT * FROM mytable

def some_function():
interesting = False
print 'This line is highlighted.'
print 'This one is not...'
print '...but this one is.'

390 Chapter 1. Contents

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

391

ml_notes.akkefa.com, Release 0.0.1

392 Chapter 2. Indices and tables

INDEX

C
Continuous random variable, 17

D
Discrete random variable, 17

393

	Contents
	ML Notation / Equations
	Notation
	Equations
	Cosine Similarity
	Properties

	What is Probability
	Definition
	Applications of probability

	Probability Terminology
	Sample Space
	Experiment or Trial
	Outcome or Sample Point
	Event
	Cardinality
	Population
	Sample
	Sets and Subsets
	Empty Set
	Complement
	Parameter
	Axioms of Probability

	Counting
	Naive Probability
	Multiplication Rule
	Factorial
	Example
	Python Solution

	Binomial Coefficient
	Permutation
	Example

	Combination
	Example
	Torch combinations
	Difference Between Permutation and Combination

	Sampling Table
	Interview Questions

	Bayes Theorem
	Definition
	Conditional Probability
	Multiplication Rule
	Bayes Theorem
	Example

	Law of Total Probability
	Independence and Mutually Exclusive Events
	Example

	Random Variables
	Definition
	Denoted by

	Probability Distribution
	Requirments
	Difference between random variables and probability distributions

	Types of Random Variables
	Probability mass function (P.M.F)
	Properties

	Cumulative distribution function (CDF)
	Properties
	Example

	Probability density function (PDF)
	Expected Value (Mean or Average)
	Definition
	Example
	Pytorch implementation

	Properties
	Expected value of a constant
	Scalar multiplication of a random variable
	Expectation of a product of random variables
	Expectation of a sum of random variables
	If random variables is function
	Law of the Unconscious Statistician

	Variance
	Denoted by
	From these steps we can easily see that
	For continuous rv
	Properties
	Addition to a constant
	Multiplication by a constant
	Find V(a X+b)
	Find Var[aX]
	Find Var[X + Y]

	Standard Deviation
	Indicator function
	Random Sample
	Example
	Independent and identically distributed random variables (IID)

	Discrete Distributions
	Bernoulli Distribution
	Bernoulli Random Variable
	P.M.F

	Mean (Expected Value)
	Variance
	Proof

	Geometric Distribution
	Geometric Random Variable
	Parameter

	Uses
	Properties
	P.M.F
	Mean (Expected Value)
	Variance

	Binomial Distribution
	Binomial Random Variable
	Parameters

	Uses
	Properties
	P.M.F
	Binomial Theorem
	Mean (Expected Value)
	Variance

	Negative Binomial Distribution
	Negative Binomial Random Variable
	Properties
	PMF
	Mean (Expected Value)
	Variance
	Relationship between Geometric and Negative Binomial rv

	Poisson Distribution
	Poisson Random Variable
	Parameter

	Uses
	PMF
	Mean (Expected Value)
	Variance

	Continuous Distributions
	Definition
	Applications
	Properties

	Uniform rv
	CDF
	Expected Value and Variance
	Example

	Exponential Distribution
	Applications
	PDF
	Expected Value
	Variance
	Properties

	Normal (Gaussian) Distribution
	Normal Random Variable
	Parameters

	Properties
	Why is it so important
	But how are so many variables approximately normally distributed?

	Probability Density Function
	Normal Probability Distribution Function
	Normal distribution PDF with different standard deviations
	Normal distribution PDF with different means
	A cumulative normal distribution function

	Expected Value and Variance
	Problems With Normality
	Identify the Normal RV?
	1. Histogram
	2. Box Plot
	3. QQ Plot

	Standard Normal Distribution
	PDF
	Cumulative distribution function
	Properties
	Proposition
	Example

	Proving this proposition
	Examples
	Find P(X<2) when N(3, 2)?
	Find P(X<4.1) when N(2, 3)?
	Interval between variables
	P(Z > 1.25) ?
	If X = N(1, 4), find P(0 < X < 3.2)?

	Gamma Distribution
	Gamma function:
	Probability Density Function
	Mean
	Variance

	Chi-squared Distribution
	mean
	variance

	T-distribution

	Joint Distributions
	Discrete Definition
	Marginal Probabilities
	Example

	Continuous Definition
	Example

	Covariance and Correlation
	Covariance
	Computational formula for Covariance

	Correlation Coefficient
	Transformations of Distributions
	Discrete Distributions
	Continuous Distributions

	Invertible functions

	Estimators and Sampling Distributions
	Random Sample
	Independent and identically distributed random variables (IID)

	Parameters
	Sampling Distributions
	Mean
	Variance

	Moments Generating Functions
	Distributions of sums
	Moment generating functions
	Properties

	MGT of Famous Distributions
	Bernoulli(p)
	Binomial(n,p)

	Finding Distributions
	Key points

	Method of Moments Estimators(MMEs)
	Eg

	Maximum Likelihood Estimation
	Idea
	Introduction
	Likelihood function
	Bernoulli distribution
	Log-likelihood
	Q/A

	Exponential distribution
	Normal distribution
	Solve for μ and σ simultaneously

	The Invariance Property
	Evaluation
	Variance, MSE, and Bias
	Practise

	MLE Properties

	Confidence Interval
	Hypothesis Testing
	What is Hypothesis
	Type of hypothesis testing
	Notation
	Null hypothesis
	Alternate hypothesis
	simple hypothesis
	composite hypothesis
	Critical values

	Errors in Hypothesis Testing
	Type I Error
	Type II Error

	Developing a Test
	level of significance
	Power of the test
	Step One
	Step Two
	Step Three
	Step Four
	Formula
	Type II Error

	Composite vs Composite Hypothesis
	One-Tailed Tests
	Step One
	Step Two
	Step Three
	Step four
	Example
	Step Zero
	Step One
	Step Two
	Step Three
	Step Four

	Hypothesis Testing with P-Values
	Example

	Power Functions
	Two Tailed Tests
	Step One
	Step Two
	Step Three
	Step Four
	Example

	Hypothesis Tests for Proportions
	The Model
	Step One
	Step Two
	Step Three

	T-Tests
	Step four
	Example
	Step Zero
	Step One
	Step Two
	Step Three
	Step Four
	P value

	Two Sample Tests for Means
	Step one
	Step Two
	Step Three
	Step Three
	Step Four
	Example

	Two Sample t-Tests for a Difference of Means
	Pooled Variance
	Step Four

	Welch’s Test and Paired Data
	Example

	Comparing Two Population Proportions
	Hypothesis Tests for the Exponential
	Test 1: Using the Sample Mean
	Step One
	Step Two
	Step Three
	Step Four

	Best Test
	UMP Tests
	Step One

	Test for the Variance of the Normal Distribution
	step 1
	step 2
	step 3
	Step 4
	Example

	Introduction
	Functions
	Domain and Range of a Function
	Piecewise Functions

	Expoents
	Negative Exponents
	Fractional Exponents

	Logarithms
	Common Logarithms
	Natural Logarithms

	Polynomials

	Derivatives and Partial Derivatives
	Average vs Instantaneous rate of change
	Slope of a line
	Derivative Explained
	Partial Derivatives
	Derivative rules
	Constant Rule
	Power Rule
	Sum Rule
	Chain Rule
	Example

	Backpropagation Chain rule

	Algebra Introduction
	Functions
	Domain and Range of a Function
	Piecewise Functions

	Expoents
	Negative Exponents
	Fractional Exponents

	Logarithms
	Common Logarithms
	Natural Logarithms

	Polynomials
	Proof by Induction

	What is Machine Learning?
	Simple Linear Regression
	Formula
	Estimating the Coefcients
	Example 1: Height and Weight
	Example 2: Hours spent studying vs. Exam score
	Optmization
	Derivatives Calculation
	Solving for 0 and 1
	Interpretation
	Evaluating the Model
	Residual Sum of Squares (RSS)
	Total Sum of Squares (TSS)

	Coefficient Significance
	Test Error

	Multi-Linear Regression
	Multi-Linear Regression in PyTorch
	Example Code
	Bias-Variance Trade-Off
	Bias
	Variance
	Trade-Off
	Image Examples
	Types of variables in multi linear regression

	Logistic Regression
	Sigmoid / Logistic Function :
	Cost / loss Function:
	MLE in Binary Classification
	Log-Likelihood:
	Threshold Decision:
	Performance Metrics:
	Logistic Regression in PyTorch:
	Step 1: Import Libraries
	Step 2: Create Dataset
	Step 3: Define the Model
	Step 4: Instantiate Model, Loss, and Optimizer
	Step 5: Train the Model

	Non Parametric Models
	KNN (K-Nearest Neighbors)
	How It Works
	Example

	Decision Tree
	How Decision Trees Work
	Components of Decision Trees
	Criteria for Splitting
	Example
	Advantages and Disadvantages

	Decision Tree Regressor
	How it Works Using MSE
	Example

	Decision Tree Classifier
	How it works:
	Gini Impurity: Simplified
	Example Dataset:
	Step 1: Calculate Class Proportions
	Step 2: Plug Proportions Into the Formula
	Step 3: Sum the Gini for All Classes
	Step 4: Interpretation
	Example:

	Ensemble Methods
	Bagging (Bootstrap Aggregating)
	Boosting
	Advantages of Ensemble Methods
	Disadvantages of Ensemble Methods

	Adaboost
	How AdaBoost Works:
	Key Formulae:
	Conclusion:

	Gradient Boosting
	How Gradient Boosting Works:
	Example:
	Conclusion:

	What is Deep Learning
	Overview
	Differences between Deep Learning and Machine Learning
	Machine Learning
	Deep learning

	Applications Of Machine Learning/Deep Learning
	Broad categories of Deep learning
	Perceptron
	Definition
	Artificial neurons
	History of the Perceptron
	A Biological Neuron
	McCulloch & Pitts Neuron Model

	Computational Model of a Biological Neuron
	Terminology
	Perceptron Learning Algorithm
	Vectorization in Python

	Perceptron Pytorch Implementation
	Label data
	Train and evaluate

	Vectors, Matrices, and Tensors
	Data onto the GPU
	Broadcasting
	Computing the Output From Multiple Training Examples at Once

	Notational Linear Algebra

	Loss Functions
	Introduction
	Classification
	Cross-Entropy or Log Loss
	Cross-entropy loss

	Evaluation Metrics
	Classification
	Confusion Matrix
	Calculate Confusion Matrix for a 2 classes problem
	Precision
	Recall / Sensitivity / True Positive Rate
	False Negative Rate
	Specificity / True Negative Rate
	False Positive Rate
	F1-score
	Drawbacks

	ROC Curve and AUC
	Best explaintion

	Ranking | Recommendation | Information Retrieval
	Language Model
	ROUGE

	Linear Algebra
	Multiplying Matrices and Vectors
	Hadamard product & element-wise product
	Dot product
	Identity and Inverse Matrices
	Identity Matrix
	Inverse Matrix
	Singular Matrix

	Norm
	Frobenius norm
	The squared Euclidean norm

	The Trace Operator
	Transpose
	Diagonal matrix
	Symmetric matrix
	Unit Vector
	Orthogonal Matrix or Orthonormal Vectors
	Orthogonal Vectors
	Orthonormal Vectors
	Orthonormal Matrix

	Eigendecomposition
	Eigenvectors and eigenvalues
	Concatenating eigenvalues and eigenvectors
	Real symmetric matrix

	Singular Value Decomposition
	Intuition
	SVD and eigendecomposition

	The Moore-Penrose Pseudoinverse
	Principal Components Analysis (PCA)
	Describing the problem
	Adding some constraints: the decoding function
	Finding the encoding function
	Minimizing the function

	Statistics
	Mean, Variance and Standard Deviation
	Mean
	Variance
	Standard Deviation

	Covariance and Correlation
	Correlation

	Sorting Algorithms
	Insertion Sort
	Characteristics of Insertion Sort
	Implmentation

	Merge sort
	Advantages of the Merge Sort
	Drawbacks of the Merge Sort
	Python implementation of MergeSort

	Binary Search
	python Implmentation of Binary Search

	Graphs Data Structure
	Binary Search Tree
	Advantages of Binary search tree
	Height of BST
	Find in BST
	Insertion and Deleteion in BST
	Traversals – Inorder, Preorder, Post Order
	Inorder Traversal:
	Preorder Traversal
	Postorder Traversal

	Red-Black Tree
	Properties of Red Black Tree

	Graph Data Structure
	Terminology
	Types of Graphs
	Directed Graphs
	Undirected Graphs
	Weighted Graph
	Cyclic Graph
	Acyclic Graph
	Directed Acyclic Graph
	Trees

	degree of a vertex
	In-Degree and Out-Degree of a Vertex

	Path
	Cycle

	Graph measures
	Degree centrality
	Closeness centrality
	Betweenness centrality
	Density

	Graph Representation
	Adjacency Matrix
	drawbacks of adjacency matrix

	Edge list
	Adjacency List

	Graph Traversal
	Depth First Search
	Breadth First Search

	Topological Sort
	Graph Algorithms

	Tree Data Structure
	Spanning Trees
	Minimum Spanning Tree
	Finding Minimum Spanning Tree
	Kruskal’s Algorithm
	Union Find Data Structure

	Amortized Analysis

	Shortest Path Algorithms
	Bellman Ford’s Algorithm
	Algorithm Steps:

	Dijkstra’s Algorithm
	Basics of Dijkstra’s Algorithm
	Requirements

	Greedy Algorithms
	Divide and Conquer
	Largest pair sum in an unsorted array
	Max subarray problem
	Fast Fourier Transform Algorithm

	What is Graphs Theory
	Graph Data Structure
	Graphs Terminology
	Types of Graphs
	Directed Graphs
	Undirected Graphs
	Weighted Graph
	Cyclic Graph
	Acyclic Graph
	Directed Acyclic Graph
	Trees
	Biprartite Graph
	Examples of Bipartite Graphs
	Projections of Bipartite Graphs

	Homogeneous graph
	Heterogeneous graph

	Node degrees
	Degree of a vertex/Node
	In-Degree and Out-Degree of a Vertex/node

	Node Centrality
	Graph Representation
	Adjacency Matrix
	Calculating the degree of node in adjacency matrix
	Drawbacks of adjacency matrix

	Edge list
	Adjacency List

	Graph Traversals
	Depth First Search
	Breadth First Search
	Topological Sort
	Graph Algorithms

	Graph Neural Networks
	Node Representations
	DeepWalk
	Word2Vec
	CBOW versus skip-gram
	Creating skip-grams

	DeepWalk and random walks
	Implementing DeepWalk

	Node2vec
	Defining a neighborhood
	Implementing Node2Vec
	Building a movie RecSys with Node2Vec

	Vanilla Neural Networks
	The Cora dataset

	Vanilla graph neural networks

	Graph Convolutional Networks
	Designing the graph convolutional layer
	Comparing graph convolutional and graph linear layers

	Graph Attention Networks
	Introducing the graph attention layer

	GraphSAGE
	Neighbor sampling
	Aggregation
	Classifying nodes on PubMed

	Graph Equations
	GCN layer

	Pytorch Fundamental
	Tensors
	Scalar
	Vectors
	Matrix
	Tensor

	Random tensors
	Zeros and ones

	Tensor datatypes
	Tensor Operations
	Addition & Multiply
	Matrix multiplication
	Positional min/max
	Reshaping, stacking, squeezing and unsqueezing

	Indexing
	Pytorch Best Practise

	Pytorch Workflow
	Data preparing and loading
	Build model
	torch.inference_mode()
	loss function and optimizer in PyTorch
	Creating an optimization loop in PyTorch
	PyTorch testing loop

	Inference
	Saving and loading a PyTorch model
	Saving a PyTorch model’s state_dict()
	Loading a saved PyTorch model’s state_dict()

	PyTorch Neural Network Classification
	Architecture
	Make classification data
	Input and output shapes
	Building a model
	Setup loss function and optimizer
	Train model
	Building a training and testing loop

	Evaluate the model
	Improving a model
	The missing piece: non-linearity

	Building a model with non-linearity
	Multi-class PyTorch model
	Creating multi-class classification data
	Multi-class classification model
	loss function and optimizer
	Getting prediction probabilities
	Creating a training and testing loop
	evaluating predictions

	Recommendation Systems
	Collaborative Filtering
	User-User Collaborative Filtering
	Excerise: Movie Recommendations
	Normalization

	Item-Item Collaborative Filtering

	Content-Based

	Matrix Factorization
	Singular Value Decomposition (SVD)
	latent features
	Example using Superise library
	Importing data
	Surprise library
	Basic algorithms
	NormalPredictor
	BaselineOnly
	k-NN algorithms
	KNNBasic
	KNNWithMeans
	KNNWithZScore
	KNNBaseline
	Matrix Factorization-based algorithms
	SVD
	SVDpp
	NMF
	Slope One
	Co-clustering

	Probability solutions
	R Solutions

	Indices and tables
	Index

